Issue |
A&A
Volume 467, Number 3, June I 2007
|
|
---|---|---|
Page(s) | 1181 - 1196 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20067007 | |
Published online | 19 March 2007 |
Efficiency of mass transfer in massive close binaries *
Tests from double-lined eclipsing binaries in the SMC
1
Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands e-mail: S.E.deMink@astro.uu.nl
2
School of Physics and Astronomy. University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland, UK
Received:
22
December
2006
Accepted:
5
March
2007
Aims.One of the major uncertainties in close binary evolution is the efficiency of mass transfer β: the fraction of transferred mass that is accreted by a secondary star. We attempt to constrain the mass-transfer efficiency for short-period massive binaries undergoing case A mass transfer.
Methods.We present a grid of about 20 000 detailed binary evolution tracks
with primary masses 3.5-35, orbital periods 1-5 days at a
metallicity Z = 0.004, assuming both conservative and
non-conservative mass transfer. We perform a systematic comparison,
using least-squares fitting, of the computed models with a sample of
50 double-lined eclipsing binaries in the Small Magellanic Cloud,
for which fundamental stellar parameters have been determined. About
60% of the systems are currently undergoing
slow mass transfer.
Results. In general we find good agreement between our models and the observed detached systems. However, for many of the semi-detached systems the observed temperature ratio is more extreme than our models predict. For the 17 semi-detached systems that we are able to match, we find a large spread in the best fitting mass-transfer efficiency; no single value of β can explain all systems. We find a hint that initially wider systems tend to fit better to less conservative models. We show the need for more accurate temperature determinations and we find that determinations of surface abundances of nitrogen and carbon can potentially constrain the mass-transfer efficiency further.
Key words: binaries: close / binaries: eclipsing / binaries: spectroscopic / Magellanic Clouds / stars: evolution / stars: mass-loss
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.