Issue |
A&A
Volume 467, Number 3, June I 2007
|
|
---|---|---|
Page(s) | 1037 - 1048 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20066445 | |
Published online | 19 March 2007 |
Magnetic interaction of jets and molecular clouds in NGC 4258
1
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: mkrause@mpifr-bonn.mpg.de
2
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
3
Radioastronomisches Institut der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
4
Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 St. Martin d'Hères, France
Received:
26
September
2006
Accepted:
9
March
2007
Context. NGC 4258 is a well known spiral galaxy with a peculiar large scale jet flow detected in the radio and in Hα. Due to the special geometry of the galaxy, the jets emerge from the nuclear region through the galactic disk – at least in the inner region.
Aims.Also the distribution of molecular gas looks different from that in other
spiral galaxies:
12CO(1–0) emission has only been detected in the center and
along the jets and only up to distances of about (1.8 kpc)
from the nucleus.
This concentration of CO along the jets is similar to what is expected as
fuel for jet-induced star formation in more distant objects.
The reason for the CO concentration along the inner jets in NGC 4258
was not understood and is the motivation for the observations presented here.
Methods.Using the IRAM interferometer at Plateau de Bure, we mapped the 12CO(1–0) emission of the central part of NGC 4258 along the nuclear jet direction in the inner 3 kpc. In order to get a properly positioned overlay with Hα we observed NGC 4258 in Hα at the Hoher List Observatory of the University of Bonn.
Results.
We detected two parallel CO ridges along a position angle of
with a total length of about
(2.8 kpc),
separated by a CO depleted funnel with a width of about
(175 pc).
The Hα emission is more extended and broader than the
CO emission with its maximum just in between the two CO ridges.
It seems to be mixed in location and in velocity with the CO
emission.
In CO we see a peculiar velocity distribution in the iso-velocity map
and p-v diagrams.
We discuss different scenarios for an interpretation and present a model
which can explain the observational results consistently.
Conclusions. We propose here that the concentration of CO along the ridges is due to interaction of the rotating gas clouds with the jet's magnetic field by ambipolar diffusion (ion-neutral drift). This magnetic interaction is thought to increase the time the molecular clouds reside near the jet thus leading to the quasi-static CO ridge.
Key words: galaxies: active / galaxies: individual: NGC 6445 / galaxies: jets / magnetic fields / galaxies: ISM / radio lines: galaxies
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.