Issue |
A&A
Volume 467, Number 2, May IV 2007
|
|
---|---|---|
Page(s) | 385 - 394 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20066006 | |
Published online | 20 February 2007 |
Amplified radio emission from cosmic ray air showers in thunderstorms
1
Radboud University Nijmegen, Department of Astrophysics, IMAPP, PO Box 9010, 6500 GL Nijmegen, The Netherlands e-mail: S.Buitink@astro.ru.nl
2
Institut für Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
3
Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
4
ASTRON, 7990 AA Dwingeloo, The Netherlands
5
Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), 077125 Magurele-Bucharest, Romania
6
Dipartimento di Fisica Generale dell'Università, 10125 Torino, Italy
7
Max-Planck-Institut für Radioastronomie, 53010 Bonn, Germany
8
Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76021 Karlsruhe, Germany
9
Fachbereich Physik, Universität Siegen, 57068 Siegen, Germany
10
Istituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino, Italy
11
Fachbereich Physik, Universität Wuppertal, 42097 Wuppertal, Germany
12
Soltan Institute for Nuclear Studies, 90950 Lodz, Poland
Received:
10
July
2006
Accepted:
14
February
2007
Context.The detection of radio pulses from cosmic ray air showers is a potentially powerful new detection mechanism for studying spectrum and composition of ultra high energy cosmic rays that needs to be understood in greater detail. The radiation consists in large part of geosynchrotron radiation. The intensity of this radiation depends, among other factors, on the energy of the primary particle and the angle of the shower axis with respect to the geomagnetic field.
Aims.Since the radiation mechanism is based on particle acceleration, the atmospheric electric field can play an important role. Especially inside thunderclouds large electric fields can be present. In this paper we examine the contribution of an electric field to the emission mechanism theoretically and experimentally.
Methods.Two mechanisms of amplification of radio emission are considered: the acceleration radiation of the shower particles and the radiation from the current that is produced by ionization electrons moving in the electric field. For both mechanisms analytical estimates are made of their effects on the radio pulse height. We selected lopes data recorded during thunderstorms, periods of heavy cloudiness and periods of cloudless weather. We tested whether the correlations with geomagnetic angle and primary energy vary with atmospheric conditions.
Results.We find that during thunderstorms the radio emission can be strongly enhanced. The present data suggests that the observed amplification is caused by acceleration of the shower electrons and positrons. In the near future, extensions of lopes and the construction of lofar will help to identify the mechanism in more detail. No amplified pulses were found during periods of cloudless sky or heavy cloudiness, suggesting that the electric field effect for radio air shower measurements can be safely ignored during non-thunderstorm conditions.
Key words: acceleration of particles / elementary particles / radiation mechanisms: non-thermal / methods: data analysis / telescopes
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.