Issue |
A&A
Volume 467, Number 1, May III 2007
|
|
---|---|---|
Page(s) | 237 - 248 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20066295 | |
Published online | 12 February 2007 |
Asteroseismology of the PG 1159 star PG 0122+200*
1
Department of Astronomy, Beijing Normal University, Beijing, PR China
2
CNRS-UMR5572, Observatoire Midi-Pyrénées, University Paul Sabatier, Toulouse, France
3
Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway
4
LESIA, Observatoire de Paris-Meudon, Meudon, France
5
Department of Astronomy, Yale University, New Haven, Connecticut, USA
6
Korea Astronomy and Space Science Institute, Daejon, Korea
7
Institute für Astronomie, Universität Wien, Wien, Austria
8
South African Astronomical Observatory, South Africa
9
Department of Physics and Space Sciences & SARA Observatory, Florida Institute of Technology, Florida, USA
10
IAC, La Laguna, Tenerife, Spain
11
Gunma Astrophysical Observatory, Japan
12
Mount Cuba Observatory and University of Delaware, Newark, Delaware, USA
13
Institut für Astrophysik, Friedrich-Hund-Platz 1, Göttingen, Germany
14
Institut für Astronomie und Astrophysik, Tübingen, Germany
15
Wise Observatory, Tel Aviv University, Tel Aviv, Israel
16
National Astronomical Observatories, Beijing, China
17
Konkoly Observatory, Budapest, Hungary
Received:
23
August
2006
Accepted:
4
February
2007
Context.The variable pre-white dwarf PG 1159 stars (GW Vir) are g-mode non-radial pulsators. Asteroseismology puts strong constraints on their global parameters and internal structure. PG 0122+200 defines the red edge of the instability strip and its evolutionary timescale is predicted to be dominated by neutrino emission. Its study offers the opportunity to better understand the instability mechanism and to validate the physics of the neutrino production in dense plasma.
Aims.To achieve such a goal requires determining precisely its fundamental parameters. This is the goal of this paper.
Methods.We present new multi-site photometric observations obtained in 2001 and 2002. Together with previous data, they allow us to detect 23 frequencies, composed of 7 triplets and 2 single frequencies, which are used to constrain its internal structure and derive its fundamental parameters.
Results.All the observed frequencies correspond to =1 g-modes. The period distribution shows
a signature of mode trapping from which we constrain the He-rich envelope mass fraction to be -6.0
-5.3.
The comparison of the mode trapping amplitudes among GW Vir stars suggests that the mass-loss efficiency
must decrease significantly below
140 kK.
We measure an average period
spacing of 22.9 s from which we derive a mass of 0.59±0.02
. From
the triplets we measure a mean rotational splitting of 3.74 μHz and a rotational period of 1.55 days.
We derive an upper limit to the magnetic field of
G. The luminosity (
= 1.3±0.5) and the distance
(
kpc) are only weakly constrained due to the large
uncertainty on the spectroscopically derived surface gravity and the absence of a measured parallax.
Conclusions.From the asteroseismic mass,
the ratio of the neutrino luminosity on the photon luminosity is 1.6±0.2 confirming that the PG 0122+200 evolutionary time scale should be dominated by neutrino
cooling. A measurement of for the largest amplitude untrapped modes should verify this prediction.
Key words: stars: evolution / stars: fundamental parameters / stars: white dwarfs / stars: oscillations / stars: individual: PG 0122+200
Based on data obtained at the Haute-Provence Observatory, INSU/CNRS, France; the Nordic Optical Telescope, La Palma, Spain; the Xinglong station of National Astronomical Observatories, China; the Bohyunsan Observatory, South-Korea; the Gunma Astrophysical Observatory, Japan; the Teide Observatory, Tenerife, Spain; the Calar Alto Observatory, Spain; the Kitt Peak National Observatory, Arizona, USA; the McDonald Observatory, Texas, USA; the South Africa Astronomical Observatory, South Africa; the Wise Observatory, Israel and the Piszkéstető Observatory, Hungary.
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.