Issue |
A&A
Volume 466, Number 1, April IV 2007
|
|
---|---|---|
Page(s) | 93 - 106 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20066811 | |
Published online | 27 February 2007 |
Internal shocks in relativistic outflows: collisions of magnetized shells
1
Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Spain e-mail: mimica@uv.es
2
Max-Planck-Institut für Astrophysik, Postfach 1312, 85741 Garching, Germany
Received:
24
November
2006
Accepted:
30
January
2007
Aims. We study the collision of magnetized irregularities (shells) in relativistic outflows in order to explain the origin of the generic phenomenology observed in the non-thermal emission of both blazars and gamma-ray bursts. We focus on the influence of the magnetic field on the collision dynamics, and we investigate how the properties of the observed radiation depend on the strength of the initial magnetic field and on the initial internal energy density of the flow.
Methods. The collisions of magnetized shells and the radiation resulting from these collisions are calculated using the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the shells with the external medium prior to their collision is also determined using an exact solver for the corresponding 1D relativistic magnetohydrodynamic Riemann problem. In both cases we assume that the magnetic field is oriented perpendicular to the flow direction.
Results. Our simulations show that two magnetization parameters – the
ratio of magnetic energy density and thermal energy density,
, and the ratio of magnetic energy density and
mass-energy density, σ – play an important role in the
pre-collision phase, while the dynamics of the collision and the
properties of the light curves depend mostly on the
magnetization parameter σ. Comparing synthetic light
curves computed from hydrodynamic and magnetohydrodynamic models
we find that the assumption commonly made in the former models
that the magnetization parameter
is constant and
uniform, holds rather well, if
. The
interaction of the shells with the external medium changes the
flow properties at their edges prior to the collision. For
sufficiently dense shells moving at large Lorentz factors
(≳25) these properties depend only on the magnetization
parameter σ. Internal shocks in GRBs may reach maximum
efficiencies of conversion of kinetic into thermal energy
between
and
, while in case of blazars, the maximum
efficiencies are ~
.
Key words: magnetohydrodynamics (MHD) / radiation mechanisms: non-thermal / galaxies: jets / galaxies: BL Lacertae objects: general / X-rays: general
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.