EDP Sciences
Free Access
Volume 466, Number 1, April IV 2007
Page(s) 201 - 213
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361:20053425
Published online 11 January 2007

A&A 466, 201-213 (2007)
DOI: 10.1051/0004-6361:20053425

High latitude gas in the $\beta\:$Pictoris system

A possible origin related to falling evaporating bodies
H. Beust and P. Valiron

Laboratoire d'Astrophysique de Grenoble, UMR 5571 CNRS, Université J. Fourier, BP 53, 38041 Grenoble Cedex 9, France
    e-mail: Herve.Beust@obs.ujf-grenoble.fr

(Received 13 May 2005 / Accepted 15 December 2006)

Context.The puzzling detection of $\ion{Ca}{ii}$ ions at fairly high latitude ($\ga$$ 30\degr$) above the outer parts of the $\beta\:$Pictoris circumstellar disk was recently reported. Surprisingly, this detection does not extend to $\ion{Na}{i}$ atoms, in contradiction with our modelling of the emission lines in and out of the mid-plane of the disk.
Aims.We propose that the presence of these off-plane $\ion{Ca}{ii}$ ions (and to a lesser extent $\ion{Fe}{i}$ atoms), and the non-detection of off-plane $\ion{Na}{i}$ atoms, could be the consequence of the evaporation process of Falling Evaporating Bodies (FEBs), i.e., star-grazing planetesimals that evaporate in the immediate vicinity of the star.
Methods.Our model is two-fold. Firstly, we show numerically and theoretically that in the star-grazing regime, the FEBs are subject to inclination oscillations up to 30-$40\degr$, and that most metallic species released during each FEB sublimation keep track of their initial orbital inclination while starting a free expansion away from the star, blown out by a strong radiation pressure. Secondly, the off-plane $\ion{Ca}{ii}$ and $\ion{Fe}{i}$ species must be stopped prior to their detection at rest with respect to the star, about 100 AU away. We revisit the role of energetic collisional processes, and we investigate the possible influence of magnetic interactions.
Results.This dynamical process of inclination oscillations explains the presence of off-plane $\ion{Ca}{ii}$ (and $\ion{Fe}{i}$). It also accounts for the absence of $\ion{Na}{i}$ because once released by the FEBs, these atoms are quickly photoionized and no longer undergo any significant radiation pressure. Our numerical simulations demonstrate that the deceleration of metallic ions can be achieved very efficiently if the ions encounter a dilute neutral gaseous medium. The required $\ion{H}{i}$ column density is reduced to ~ $ 10^{17}\,\mbox{cm}^{-2}$, one order of magnitude below present detection limits. We also investigate the possibility that the ions are slowed down magnetically. While the sole action of a magnetic field of the order of $1\,\mu$G is not effective, the combined effect of magnetic and collisional deceleration processes lead to an additional lowering of the required $\ion{H}{i}$ column density by one order of magnitude.

Key words: stars: circumstellar matter -- stars: individual: $\beta\:$Pic -- celestial mechanics -- methods: numerical -- molecular processes -- magnetic fields

© ESO 2007

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.