Issue |
A&A
Volume 465, Number 1, April I 2007
|
|
---|---|---|
Page(s) | 219 - 233 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20065936 | |
Published online | 22 January 2007 |
Star formation in a clustered environment
around the UCH
region in IRAS 20293+3952
1
Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Catalunya, Spain e-mail: apalau@am.ub.es
2
Institut de Ciències de l'Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, Torre C5-Parell-2a, 08193 Bellaterra, Catalunya, Spain
3
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4
Max-Planck-Institut for Astronomy, Koenigstuhl 17, 69117 Heidelberg, Germany
Received:
29
June
2006
Accepted:
8
January
2007
Aims.We aim at studying the cluster environment surrounding the UCH region in IRAS 20293+3952, a region in the first stages of formation of a cluster around a high-mass star.
Methods.BIMA and VLA were used to observe the 3 mm
continuum, N2H+ (1–0), NH3 (1, 1), NH3 (2, 2), and CH3OH (2–1) emission of
the surroundings of the UCH region. We studied the kinematics of the region
and computed the rotational temperature and column density maps by fitting the
hyperfine structure of N2H+ and NH3.
Results.The dense gas traced by N2H+ and
NH3 shows two different clouds, a main cloud to the east of the UCH region, of ~0.5 pc and ~250
, and a western cloud, of ~0.15 pc
and ~30
. The dust emission reveals two strong components in the
northern side of the main cloud, BIMA 1 and BIMA 2, associated with Young
Stellar Objects (YSOs) driving molecular outflows, and two fainter components in
the southern side, BIMA 3 and BIMA 4, with no signs of star forming activity.
Regarding the CH3OH, we found strong emission in a fork-like structure
associated with outflow B, as well as emission associated with outflow A. The
YSOs associated with the dense gas seem to have a diversity of age and
properties. The rotational temperature is higher in the northern side of the
main cloud, around 22 K, where there are most of the YSOs, than in the southern
side, around 16 K. There is strong chemical differentiation in the region,
since we determined low values of the NH3/N2H+ ratio, ~50,
associated with YSOs in the north of the main cloud, and high values, up to 300,
associated with cores with no detected YSOs, in the south of the main cloud.
Such a chemical differentiation is likely due to abundance/depletion effects.
Finally, interaction between the different sources in the region is important.
First, the UCH
region is interacting with the main cloud, heating it and
enhancing the CN (1–0) emission. Second, outflow A seems to be excavating a cavity and heating its walls. Third, outflow B is interacting with the BIMA 4 core, likely producing the deflection of the outflow and illuminating a clump
located ~0.2 pc to the northeast of the shock.
Conclusions.The star formation process in IRAS 20293+3952 is not obviously associated with interactions, but seems to take place where density is highest.
Key words: stars: formation / ISM: individual objects: IRAS 20293+3952 / dust, extinction / ISM: clouds
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.