Issue |
A&A
Volume 464, Number 2, March III 2007
|
|
---|---|---|
Page(s) | 667 - 682 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20065641 | |
Published online | 11 January 2007 |
The late stages of the evolution of intermediate-mass primordial stars: the effects of overshooting
1
Departament de Física Aplicada, Escola Politécnica Superior de Castelldefels, Universitat Politècnica de Catalunya, Avda. del Canal Olímpic s/n, 08860 Castelldefels, Spain e-mail: [pilar;jordi;garcia]@fa.upc.edu
2
Institute for Space Studies of Catalonia, c/Gran Capità 2–4, Edif. Nexus 104, 08034 Barcelona, Spain
Received:
19
May
2006
Accepted:
6
December
2006
Aims.We compute and analyze the evolution of primordial stars of
masses at the ZAMS between and
, with and without overshooting. Our main goals are
to determine the nature of the remnants of massive
intermediate-mass primordial stars and to check the
influence of overshooting in their evolution.
Methods.Our calculations cover stellar evolution from the main sequence phase until the formation of the degenerate cores and the thermally pulsing phase.
Results.We have obtained the values for the limiting masses of
Population III progenitor stars leading to carbon-oxygen and
oxygen-neon compact cores. Moreover, we have also obtained
the limiting mass for which isolated primordial stars would
lead to core-collapse supernovae after the end of the main
central burning phases. Considering a moderate amount of
overshooting, the mass thresholds at the ZAMS for the
formation of carbon-oxygen and oxygen-neon degenerate cores
shift to smaller values by about . As a
by-product of our calculations, we have also obtained the
structure and composition profiles of the resulting compact
remnants.
Conclusions.As opposed to what happens with solar metallicity objects,
the final fate of primordial stars is not straightforwardly
determined from the mass of the compact cores at the end of
carbon burning. Instead, the small mass-loss rates typically
associated with stellar winds of low metallicity stars might
allow the growth of the resulting degenerate cores up to the
Chandrasekhar mass, on time scales one or two orders of
magnitude shorter than the time required to lose the
envelope. This would lead to the formation of supernovae for
initial masses as small as ~.
Key words: stars: evolution / stars: AGB and post-AGB / stars: white dwarfs / stars: supernovae: general
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.