Issue |
A&A
Volume 463, Number 3, March I 2007
|
|
---|---|---|
Page(s) | 1053 - 1060 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20065636 | |
Published online | 05 December 2006 |
WX Ceti: a closer look at its behaviour in quiescence and outburst *,**
1
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium e-mail: csterken@vub.ac.be
2
Instituto de Astronomia, Universidad Catolica del Norte, Avenida Angamos 0610, Antofagasta, Chile
3
Department of Physics and Meteorology, Universidad de Valparaiso, Avda. Gran Bretaña 1111, Valparaiso, Chile
4
Hiroshima University Astrophysical Science Center, Japan
Received:
19
May
2006
Accepted:
27
October
2006
Context.WX Cet is a dwarf nova with rare outbursts of large amplitude.
Aims.We compile the available data of WX Cet, compare the results with other SU UMa stars, and discuss our findings in the context of current theories of superhumps and superoutbursts to progress with our understanding of SU UMa stars.
Methods.We analyse all recorded outbursts of WX Cet, based on the AAVSO archive and other published sources, and present new CCD photometry during two recent superoutbursts, including the determination of the corresponding periodicities. We perform numerical disc instability model calculations and compare its predictions with the observations.
Results.WX Cet is a SU UMa type dwarf nova with a superoutburst cycle of
880 days on average, and short eruptions every 200 days. It seems that
the outburst cycle length increased by nearly a factor of 2 during the past
70 years. According to our numerical simulations, this can be explained
in the context of the disc instability model
by assuming enhanced mass transfer during outburst and a decreasing mean mass
transfer rate during the last decades.
Using the data available, we refine the orbital period of
WX Cet to days
and interpret the orbital hump found in quiescence as emission from the hot
spot.
During two recent superoutbursts in
July 2001 and December 2004 we observed superhumps, with a rather large
positive period derivative of
, present
only during the first 9 days of a superoutburst. Afterwards and during decline
from the “plateau” phase, a constant superhump period of about 0.05922 days
was observed.
Late superhumps are present for at least 12 days after the
decline from the “plateau”, with a period of 0.05927 days.
We find this phenomenology difficult to interpret in the context
of the standard explanation for superhumps, i.e. the thermal tidal instability
model.
Conclusions.We interpret the long-term light curve of WX Cet as the result of a significantly decreasing mean mass transfer rate. Highlighting the complexity of the observed superhump light curves, we emphasise the importance of WX Cet for a proper understanding of the SU UMa star outburst physics and the evolution of ultra-short period cataclysmic variables.
Key words: stars: individual: WX Ceti / stars: variables: general / stars: novae, cataclysmic variables
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.