EDP Sciences
Free Access
Volume 462, Number 3, February II 2007
Page(s) 1187 - 1198
Section Atomic, molecular, and nuclear data
DOI https://doi.org/10.1051/0004-6361:20065881
Published online 24 October 2006

A&A 462, 1187-1198 (2007)
DOI: 10.1051/0004-6361:20065881

Effects of CO $\mathsf{_2}$ on H $\mathsf{_2}$O band profiles and band strengths in mixed H $\mathsf{_2}$O:CO $\mathsf{_2}$ ices

K. I. Öberg1, H. J. Fraser2, A. C. A. Boogert3, S. E. Bisschop1, G. W. Fuchs1, E. F. van Dishoeck1, and H. Linnartz1

1  Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands
    e-mail: oberg@strw.leidenuniv.nl
2  Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow G4 ONG, Scotland
3  AURA/NOAO-South, Casilla 603, La Serena, S. A. Chile

(Received 22 June 2006 / Accepted 17 October 2006)

Context.H2O is the most abundant component of astrophysical ices. In most lines of sight it is not possible to fit both the H2O 3 $\mu$m stretching, the 6 $\mu$m bending intensities with a single pure H2O spectrum. Recent Spitzer observations have revealed CO2 ice in high abundances and it has been suggested that CO2 mixed into H2O ice can affect the positions, shapes and relative strengths of the 3 $\mu$m and 6 $\mu$m bands.
Aims.We investigate whether the discrepancy in intensity between H2O bands in interstellar clouds and star forming regions can be explained by CO2 mixed into the observed H2O ice affecting the bands differently.
Methods.Laboratory infrared transmission spectroscopy is used to record spectra of H2O:CO2 ice mixtures at astrophysically relevant temperatures and composition ratios.
Results.The H2O peak profiles and band strengths are significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. The ratio between the strengths of the 3 $\mu$m and 6 $\mu$m bands drops linearly with CO2 concentration such that it is 50% lower in a 1:1 mixture compared to pure H2O ice. In all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 $\mu$m, which can be used to put an upper limit on the CO2 concentration in the H2O ice. The H2O bending mode profile also changes drastically with CO2 concentration; the broad pure H2O band gives way to two narrow bands as the CO2 concentration is increased. This makes it crucial to constrain the environment of H2O ice to enable correct assignments of other species contributing to the interstellar 6 $\mu$m absorption band. The amount of CO2 present in the H2O ice of B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and HCOOH.

Key words: astrochemistry -- line: profiles -- molecular data -- methods: laboratory -- ISM: molecules -- infrared: ISM

© ESO 2007

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.