Issue |
A&A
Volume 461, Number 3, January III 2007
|
|
---|---|---|
Page(s) | 861 - 879 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361:20065904 | |
Published online | 16 October 2006 |
GaBoDS: The Garching-Bonn Deep Survey
VI. Probing galaxy bias using weak gravitational lensing
1
Universität Bonn, Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: psimon@astro.uni-bonn.de
2
Isaac Newton Group of Telescopes, Santa Cruz de La Palma, Spain
3
University of Oxford, Denys Department of Physics, Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
4
Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany
Received:
26
June
2006
Accepted:
9
October
2006
Aims. An interesting question of contemporary cosmology concerns the relation between the spatial distribution of galaxies and dark matter, which is thought to be the driving force behind the structure formation in the Universe. In this paper, we measure this relation, parameterised by the linear stochastic bias parameters, for a range of spatial scales using the data of the Garching-Bonn Deep Survey (GaBoDS).
Methods.
The weak gravitational lensing effect is used to infer matter
density fluctuations within the field-of-view of the survey
fields. This information is employed for a statistical comparison
of the galaxy distribution to the total matter distribution. The
result of this comparison is expressed by means of the linear bias
factor b, the ratio of density fluctuations, and the correlation
factor r between density fluctuations. The total galaxy sample
is divided into three sub-samples using R-band magnitudes and
the weak lensing analysis is applied separately for each
sub-sample. Together with the photometric redshifts from the
related COMBO-17 survey we estimate the typical mean redshifts of
these samples with ,
respectively.
Results.
Using a flat model with
as fiducial cosmology, we obtain
values for the galaxy bias on scales between
. At
,
the median redshifts of the samples correspond roughly to a
typical comoving scale of
with
, respectively. We find evidence for a
scale-dependence of b. Averaging the measurements of the bias
over the range
yields
(
), respectively. Galaxies are thus less clustered than
the total matter on that particular range of scales (anti-biased).
As for the correlation factor r we see no scale-dependence
within the statistical uncertainties; the average over the same
range is
(
), respectively. This implies a possible decorrelation
between galaxy and dark matter distribution. An evolution of
galaxy bias with redshift is not found, the upper limits are:
and
.
Key words: galaxies: statistics / cosmology: dark matter / cosmology: large-scale structure of Universe / cosmology: observations
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.