Issue |
A&A
Volume 461, Number 3, January III 2007
|
|
---|---|---|
Page(s) | 1037 - 1047 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20065473 | |
Published online | 16 October 2006 |
Structure and dynamics of the class I young stellar object L1489 IRS
1
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: brinch@strw.leidenuniv.nl
2
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Mail Stop 42, Cambridge, MA 02138, USA
Received:
21
April
2006
Accepted:
11
October
2006
Context.During protostellar collapse, conservation of angular momentum leads to the formation of an accretion disc. Little is known observationally about how and when the velocity field around the protostar shifts from infall-dominated to rotation-dominated.
Aims.We investigate this transition in the low-mass protostar L1489 IRS, which is known to be embedded in a flattened, disc-like structure that shows both infall and rotation. We aim to accurately characterise the structure and composition of the envelope and its velocity field, and find clues to its nature.
Methods.We construct a model for L1489 IRS consisting of an flattened envelope and a velocity field that can vary from pure infall to pure rotation. We obtain best-fit parameters by comparison to 24 molecular transitions from the literature, and using a molecular excitation code and a Voronoi optimisation algorithm. We test the model against existing millimeter interferometric observations, near-infrared scattered light imaging, and 12CO ro-vibrational lines.
Results.We find that L1489 IRS is well described by a central stellar mass of
1.3 ± 0.4 surrounded by a 0.10
flattened envelope with
approximate scale height
, inclined at
. The velocity field is strongly dominated
by rotation, with the velocity vector making an angle of
±
with the azimuthal direction. Reproducing low-excitation transitions requires
that the emission and absorption by the starless core
(8400 AU) east of
L1489 IRS is included properly, implying that L1489 IRS is located partially
behind this core.
Conclusions.We speculate that L1489 IRS was originally formed closer to the center of this core, but has migrated to its current position over the past few times 105 yr, consistent with their radial velocity difference of 0.4 km s-1. This suggests that L1489 IRS' unusual appearance may be result of its migration, and that it would appear as a “normal” embedded protostar if it were still surrounded by an extended cloud core. Conversely, we hypothesize that the inner envelopes of embedded protostars resemble the rotating structure seen around L1489 IRS.
Key words: ISM: kinematics and dynamics / ISM: molecules / ISM: individual objects: L1489 IRS / radio lines: ISM / stars: formation
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.