Issue |
A&A
Volume 461, Number 2, January II 2007
|
|
---|---|---|
Page(s) | 767 - 773 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361:20066266 | |
Published online | 04 October 2006 |
Experimental Mg I oscillator strengths and radiative lifetimes for astrophysical applications on metal-poor stars
New data for the Mg I b triplet
1
Atomic Astrophysics, Lund Observatory, Lund University, Box 43, 221 00 Lund, Sweden e-mail: maria@astro.lu.se
2
Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
3
Atomic Physics, Department of Physics, Lund Institute of Technology, Box 118, 221 00 Lund, Sweden
4
Centre for Astrophysics Research, STRI, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
Received:
18
August
2006
Accepted:
26
September
2006
Context.The stellar abundance ratio of Mg/Fe is an important tool in diagnostics of galaxy evolution. In order to make reliable measurements of the Mg abundance of stars, it is necessary to have accurate values for the oscillator strength (f-value) of each of the observable transitions. In metal-poor stars the 3p–4s triplet around 5175 Å (Fraunhofer's so-called b lines) are the most prominent magnesium lines. The lines also appear as strong features in the solar spectrum.
Aims.We present new and improved experimental oscillator strengths for the optical 3p–4s triplet, along with experimental radiative lifetimes for six terms in . With these data we discuss the implications on previous and future abundance analyses of metal-poor stars.
Methods.The oscillator strengths have been determined by combining radiative lifetimes with branching fractions, where the radiative lifetimes are measured using the laser induced fluorescence technique and the branching fractions are determined using intensity calibrated Fourier Transform (FT) spectra. The FT spectra are also used for determining new accurate laboratory wavelengths for the 3p–4s transitions.
Results.The f-values of the 3p–4s lines have been determined with an absolute uncertainty of 9%, giving an uncertainty of ±0.04 dex in the log gf values. Compared to values previously used in abundance analyses of metal-poor stars, rescaling to the new values implies an increase of typically 0.04 dex in the magnesium abundance.
Key words: atomic data / line: profiles / methods: laboratory / techniques: spectroscopic / stars: abundances
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.