Issue |
A&A
Volume 461, Number 2, January II 2007
|
|
---|---|---|
Page(s) | 551 - 564 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20065838 | |
Published online | 09 October 2006 |
Simulations of polarized dust emission
1
Observatory, University of Helsinki, Tähtitorninmäki, PO Box 14, 00014 University of Helsinki, Finland e-mail: vpelkone@astro.helsinki.fi; mika.juvela@helsinki.fi
2
Department of Physics, University of California, San Diego, CASS/UCSD 0424, 9500 Gilman Drive, La Jolla, CA 92093-0424, USA e-mail: ppadoan@ucsd.edu
Received:
15
June
2006
Accepted:
31
August
2006
Aims.The aim is to study the polarization of thermal dust emission to see if the alignment of the grain by radiative torques could explain the observed relation between the degree of polarization and intensity. Predictions are made for polarimetry observations with the Planck satellite.
Methods.Our results are based on model clouds derived from MHD simulations of magnetized turbulent flows. The continuum radiative transfer problem is solved with Monte Carlo methods to estimate the three-dimensional distribution of dust emission and the radiation field strength affecting the grain alignment. The minimum grain size aligned by the radiative torques is calculated, and the Rayleigh polarization reduction factor, R, is derived for different grain size distributions. We show maps of polarized thermal dust emission that are predicted by the models. The relation between the intensity and polarization degree is examined in self-gravitating cores. Furthermore, we study the effects of wavelength, resolution, and observational noise.
Results.We are able to reproduce the P/I-relation with the grain alignment by radiative
torques. The decrease in intrinsic polarization and total emission means
that sub-mm polarimetry carries only a little information about the magnetic
fields in dense cores with high visual extinction. The interpretation of
the observations will be further complicated by the unknown magnetic field
geometry and the fact that what is observed as cores may, in fact, be a
superposition of several density enhancements.
According to our calculations, Planck will be able to map dust
polarization reliably when AV exceeds ∼2m at spatial resolution of
~.
Key words: dust, extinction / ISM: clouds / polarization / radiative transfer
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.