Issue |
A&A
Volume 461, Number 2, January II 2007
|
|
---|---|---|
Page(s) | 537 - 549 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20065210 | |
Published online | 04 October 2006 |
Collisional dust avalanches in debris discs
1
Stockholm Observatory, SCFAB, 10691 Stockholm, Sweden e-mail: anja@astro.su.se
2
University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
3
Observatoire de Paris, Section de Meudon, 92195 Meudon Principal Cedex, France
Received:
15
March
2006
Accepted:
29
August
2006
We quantitatively investigate how collisional avalanches may develop in debris discs as the result of the initial breakup of a planetesimal or comet-like object, triggering a collisional chain reaction due to outward escaping small dust grains. We use a specifically developed numerical code that follows both the spatial distribution of the dust grains and the evolution of their size-frequency distribution due to collisions. We investigate how strongly avalanche propagation depends on different parameters (e.g., amount of dust released in the initial breakup, collisional properties of dust grains, and their distribution in the disc). Our simulations show that avalanches evolve on timescales of ~1000 years, propagating outwards following a spiral-like pattern, and that their amplitude exponentially depends on the number density of dust grains in the system. We estimate the probability of witnessing an avalanche event as a function of disc densities, for a gas-free case around an A-type star, and find that features created by avalanche propagation can lead to observable asymmetries for dusty systems with a β Pictoris-like dust content or higher. Characteristic observable features include: (i) a brightness asymmetry of the two sides for a disc viewed edge-on, and (ii) a one-armed open spiral or a lumpy structure in the case of face-on orientation. A possible system in which avalanche-induced structures might have been observed is the edge-on seen debris disc around HD 32297, which displays a strong luminosity difference between its two sides.
Key words: stars: circumstellar matter / planetary systems: formation / planetary systems: protoplanetary disks / stars: individual: β Pictoris / stars: individual: HD 32297
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.