Issue |
A&A
Volume 460, Number 2, December III 2006
|
|
---|---|---|
Page(s) | 415 - 424 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20065010 | |
Published online | 12 September 2006 |
Multi-wavelength afterglow observations of the high redshift GRB 050730
1
Instituto de Astrofísica de Andalucía, PO Box 03004, 18080 Granada, Spain e-mail: sbp2@mssl.ucl.ac.uk
2
European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
3
Max-Planck-Institut für extraterrestrische Physik, 85748 Garching, Germany
4
Departamento de Física (EPS), Universidad de Jaén, Campus Las Lagunillas s/n (Ed-A3), 23071 Jaén, Spain
5
Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d'Hères, France
6
IAA-CSIC and Space Telescope Science Institute, St. Martin Dr., Baltimore, MA, USA
7
Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520, USA
8
Nikolaev State University, Nikolska 24, Nikolaev 54030, Ukraine
9
Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD, UK
10
Instituto de Astrofísica de Canarias, C/. Vía Láctea, s/n, 38200 La Laguna, Tenerife, Spain
11
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
12
Center for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
13
Center for Research & Education in Science & Technology, Hosakote, Bangalore 562 114, India
14
Indian Institute of Astrophysics, Bangalore 560 034, India
15
Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Naini Tal 263129, Uttaranchal, India
Received:
11
February
2006
Accepted:
2
August
2006
Context.GRB 050730 is a long duration high-redshift burst ()
that was
discovered by Swift. The
afterglow shows variability and was well monitored over a wide wavelength range.
We present comprehensive temporal and spectral analysis of the afterglow of GRB 050730
including observations covering the wavelength range from the millimeter to X-rays.
Aims.We use multi-wavelength afterglow data to understand the complex temporal and spectral decay properties of this high redshift burst.
Methods.Five telescopes were used to study the decaying afterglow of GRB 050730 in the
and K photometric pass bands. A spectral energy distribution was
constructed at 2.9 h post-burst in the
and K bands.
X-ray data from the satellites Swift and XMM-Newton were used to study the
afterglow evolution at higher energies.
Results.The early afterglow shows variability at early times and
the slope steepens at 0.1 days (8.6 ks)
in the and K passbands. The early afterglow light curve decayed with
a powerlaw slope index
and
subsequently steepened to
based on the R and I band data.
A millimeter detection of the afterglow around 3 days after the burst shows
an excess in comparison to theoretical predictions. The early X-ray light curve observed by Swift
is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw
decay with
which is steeper than the optical light curve.
A spectral energy distribution (SED) was constructed at ~2.9 h after the
burst. An electron energy index, p, of ~2.3 was calculated using the SED and
the photon index from the X-ray afterglow spectra and implies that the
synchrotron cooling frequency
is above the X-ray band.
Key words: gamma ray: bursts / techniques: photometric
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.