Issue |
A&A
Volume 460, Number 1, December II 2006
|
|
---|---|---|
Page(s) | 289 - 300 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20065250 | |
Published online | 12 September 2006 |
Charge-transfer induced EUV and soft X-ray emissions in the heliosphere
1
Service d'Aéronomie du CNRS, 91371 Verrières-le-Buisson, France e-mail: dimitra.koutroumpa@aerov.jussieu.fr
2
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
3
Lomonosov Moscow State University, Department of Aeromechanics and Gas Dynamics, Faculty of Mechanics and Mathematics, Moscow 119899, Russia
Received:
January
1900
Accepted:
28
July
2006
Aims.We study the EUV/soft X-ray emission generated by charge transfer between solar wind heavy ions and interstellar neutral atoms and variations of the X-ray intensities and spectra with the line of sight direction, the observer location, the solar cycle phase and the solar wind anisotropies, and a temporary enhancement of the solar wind similar to the event observed by Snowden et al. (2004) during the XMM-Hubble Deep Field North exposure.
Methods.Using recent observations of the neutral atoms combined with updated cross-sections and cascading photon spectra we have computed self-consistent distributions of interstellar hydrogen, helium and highly charged solar wind ions for a stationary solar wind and we have constructed monochromatic emission maps and spectra. We have evaluated separately the contribution of the heliosheath and heliotail, and included X-ray emission of the excited solar wind ions produced in sequential collisions to the signal.
Results.In most practicable observations, the low and medium latitude X-ray emission is significantly higher at minimum activity than at maximum, especially around December. This occurs due to a strong depletion of neutrals during the high activity phase, which is not compensated by an increase of the solar wind flux. For high latitudes the emission depends on the ion species in a complex way. Intensity maps are in general significantly different for observations separated by six-month intervals. Secondary ions are found to make a negligible contribution to the X-ray line of sight intensities, because their density becomes significant only at large distances. The contribution of the heliosheath-heliotail is always smaller than 5%. We can reproduce both the intensity range and the temporal variation of the XMM-HDFN emission lines in the 0.52–0.75 keV interval, using a simple enhanced solar wind spiral stream. This suggests a dominant heliospheric origin for these lines, before, during and also after the event.
Key words: solar wind / X-rays: diffuse background / ISM: general / galaxy: halo / X-rays: ISM / ISM: supernova remmants
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.