Issue |
A&A
Volume 459, Number 2, November IV 2006
|
|
---|---|---|
Page(s) | 519 - 533 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20041155 | |
Published online | 12 September 2006 |
Radio emission from shell-type supernova remnants
Institute of Physics, Azerbaijan National Academy of Sciences, BAKU AZ1143, Azerbaijan e-mail: asvarov@physics.ab.az
Received:
23
April
2004
Accepted:
14
June
2006
The evolution of the radio emission of shell-type Supernova remnants (SNRs) is modeled within the framework of the simple and commonly used assumptions that the mechanism of diffusive shock acceleration (DSA) is responsible for generating radio emitting electrons and that the magnetic field is the typical interstellar field compressed at the shock. It is considered that electrons are injected into the mechanism in test-particle regime directly from the high energy tail of the downstream Maxwellian distribution function. The model can be applied to most of the observed SNRs because the majority of detected SNRs are shell-types and have a more or less spherical shape and are sources of nonthermal radio emission. It is shown that the model successfully explains the many averaged observational properties of evolved shell-type SNRs. In particular, the radio surface brightness (Σ) evolves with diameter as , while the bounding shock is strong (Mach number is
), followed by steep decrease (steeper than
) for
.
Such evolution of the surface brightness with diameter and its strong dependence on the environmental parameters strongly reduce the usefulness of
relations as a tool for determining the distances to SNRs. The model predicts no radio emission from SNRs in the late radiative stage of evolution and the existence of radio-quiet but relatively active SNRs is possible.
Our model easily explains very large-diameter radio sources such as the Galactic Loops and the candidates for Hypernova radio remnants.
The model predicts that most of the observed SNRs with
are located in a tenuous phase of the ISM.
The model also predicts the existence of a population of
pc SNRs with
if the kinetic energy of the explosion is
erg.
From the comparison of the model results with the statistics of evolved shell-type SNRs, we were able to estimate the fraction of electrons accelerated from the thermal pool in the range
. If acceleration takes place directly from the high energy tail of the downstream Maxwellian distribution function, then the corresponding injection momentum is estimated as
.
Key words: ISM: supernova remnants / acceleration of particles / shock waves
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.