Issue |
A&A
Volume 458, Number 3, November II 2006
|
|
---|---|---|
Page(s) | 987 - 995 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20065691 | |
Published online | 12 September 2006 |
Explosive heating of low-density coronal plasma
Space and Atmospheric Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BZ, UK e-mail: s.bradshaw@imperial.ac.uk
Received:
25
May
2006
Accepted:
9
August
2006
Context.This paper addresses the impulsive heating of very diffuse coronal loops, such as can occur in a nanoflare-heated corona with low filling factor.
Aims.We study the physics associated with nanoflare heating in this scenario and aim to determine whether there exist any observable signatures.
Methods.We derive an analytical model in order to gain some simple physical insights into the system and use a one dimensional hydrodynamic model that treats the electrons and ions as a coupled fluid to simulate nanoflare heating with time-scales of 30 s. Our analytical model also provide a means of verifying our numerical results.
Results.We find that diffuse loops containing plasma at 20 MK can be rapidly created and subsequently filled by the violent evaporation of chromospheric plasma driven by near-saturated thermal conduction. Most importantly, we find order-of-magnitude departures from equilibrium of the ionisation balance for iron and use this result to identify a potential signature of this heating mechanism.
Conclusions.We conclude that nanoflare heating can account for the presence of extremely high temperature plasma in a corona with low filling factor. We find that near-saturated thermal conduction may play a key role at the onset of chromospheric evaporation and a non-equilibrium ionisation balance is absolutely inevitable. The high temperatures could never be directly measured in the corona due to the small emission measure and the most promising signature of such heating is blue-shifted plasma from the loop footpoints. We find reason for cautious optimism that this signature can be detected by future space-based spectroscopic instrumentation (e.g. SolarB-EIS).
Key words: atomic processes / hydrodynamics / Sun: corona / Sun: UV radiation
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.