Issue |
A&A
Volume 458, Number 3, November II 2006
|
|
---|---|---|
Page(s) | 965 - 973 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20065687 | |
Published online | 12 September 2006 |
The early phases of a solar prominence eruption and associated flare: a multi-wavelength analysis
1
Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK e-mail: [c.chifor;h.e.mason;d.tripathi]@damtp.cam.ac.uk
2
Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan e-mail: isobe@eps.s.u-tokyo.ac.jp
3
Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano, 384-1305, Japan e-mail: asai@nro.nao.ac.jp
Received:
24
May
2006
Accepted:
4
August
2006
Aims.We aim to examine the precursor phases and early evolution of a prominence eruption associated with a M4-class flare and a partial halo coronal mass ejection (CME) observed on 2005 July 27. Our main goal is to investigate the precursor eruption signatures observed in EUV, X-ray and microwave emission and their relation to the prominence destabilisation.
Methods.We perform a multi-wavelength study of the prominence morphology and motion using high-cadence and spatial resolution EUV 171 Å images from the TRACE satellite. The high-temperature flare radiative emission in soft and hard X-rays are analysed through imaging and spectral modeling with RHESSI. Complementary microwave images (17 GHz and 34 GHz) from NoRH are also investigated.
Results.The activation of the filament proceeds from one anchored footpoint. We observe “pre-eruption” brightenings in X-ray and EUV images, close to the erupting footpoint of the prominence, being temporally correlated to the point when the prominence first enters a slow-rise phase, and then an accelerated fast-rise phase. The brightness temperature (Tb) of the prominence at 34 GHz is increasing during the eruption. We also find very good correlation between the prominence height-time profile and the spatially integrated soft X-ray (SXR) emission.
Conclusions.We discuss the observed precursor brightenings with respect to possible mechanisms that might be responsible for the prominence destabilisation and acceleration. Our observations suggest that reconnection events localised beneath the erupting footpoint may eventually destabilise the entire prominence, causing the eruption.
Key words: Sun: prominences / Sun: coronal mass ejections (CMEs) / Sun: flares / Sun: UV radiation / Sun: radio radiation / Sun: X-rays, gamma rays
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.