Issue |
A&A
Volume 458, Number 2, November I 2006
|
|
---|---|---|
Page(s) | 553 - 567 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20054193 | |
Published online | 12 September 2006 |
Three-dimensional simulations of non-stationary accretion by remnant black holes of compact object mergers
1
School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK e-mail: [S.Setiawan;M.Ruffert]@ed.ac.uk
2
Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany e-mail: thj@mpa-garching.mpg.de
Received:
12
September
2005
Accepted:
21
July
2006
By means of three-dimensional hydrodynamic simulations with an
Eulerian PPM code we investigate the time-dependent evolution and
properties of accretion tori around nonrotating and rotating
stellar-mass black holes, using a pseudo-Newtonian
(Paczyński & Wiita or Artemova-Björnsson-Novikov) potential
to approximate the effects of general relativity. The simulations
are performed with three nested Cartesian grids to ensure
sufficient resolution near the central black hole on the one
hand and a large computational volume on
the other. The black hole and torus are considered as the remnant
of a binary neutron star or neutron-star black-hole merger.
Referring to results from previous hydrodynamical simulations of
such events, we assume the initial configurations to consist of
a black hole with a mass of about 4 girded by a toroidal
accretion disk with a mass in the range from about 0.01
to
0.2
. We simulate the
torus evolution without and with physical shear viscosity,
employing a simple α-model for the gas viscosity.
As in our previous work on merging neutron star binaries and
neutron star/black hole binaries, we use the equation of state
of Lattimer and Swesty. The energy loss and lepton number change
due to neutrino emission from the hot torus are treated by a
neutrino-trapping scheme. The energy
deposition by neutrino-antineutrino annihilation around the disk
is evaluated in a post-processing step. The time-dependent
efficiency of converting gravitational energy to neutrinos,
expressed by the ratio of neutrino luminosity to accretion rate of
rest-mass energy, can reach maximum values of up to about 10%.
The corresponding efficiency of converting neutrino energy into
a pair-photon fireball by neutrino annihilation peaks at values
of several percent. Interestingly,
we find that the rate of neutrino-antineutrino annihilation decays
with time much less steeply than the total neutrino luminosity does
with the decreasing gas mass of the torus, because the ongoing
protonization of the initially neutron-rich disk matter leads to
a rather stable product of neutrino and antineutrino luminosities.
The neutrino luminosity and total energy release
of the torus increase steeply with higher viscosity, larger torus
mass, and larger black hole spin in corotation with the disk,
in particular when the spin parameter is
.
The latter dependence is moderated in case of a high disk viscosity.
For rotation rates as expected for post-merger black holes
(
) and reasonable values of the alpha viscosity of the torus
(
), torus masses in the investigated range can
release sufficient energy in neutrinos to account for the
energetics of the well-localized short gamma-ray bursts
recently detected by Hete and Swift, if collimation
of the ultrarelativistic outflows into about 1% of the sky
is invoked, as predicted by recent hydrodynamic jet simulations.
Key words: accretion, accretion disks / hydrodynamics / elementary particles / gamma rays: bursts / stars: neutron
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.