Issue |
A&A
Volume 457, Number 1, October I 2006
|
|
---|---|---|
Page(s) | 313 - 318 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20065368 | |
Published online | 12 September 2006 |
Simulating the emission of electromagnetic waves in the terahertz range by relativistic electron beams
1
Laboratory for Plasma Astrophysics, Faculty of Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan
2
Centro de Radio Astronomia e Astrofisica Mackenzie, Universidade Presbiteriana Mackenzie, 01302-907 So Paulo, SP, Brazil
Received:
5
April
2006
Accepted:
23
May
2006
Aims.We investigate the dynamics of relativistic electron beams propagating along a uniform magnetic field and the emission process of electromagnetic waves within the terahertz range from the solar photosphere. Our aim is to understand a new solar burst component emitting only in the terahertz range during the solar flare observed by Kaufmann et al. (2004).
Methods. We used a 2D3V fully relativistic electromagnetic particle-in-cell (PIC) simulation.
Results. We did three different kinds of simulations. The first simulation confirmed that the growth rate of relativistic electron beam instability agrees well with the theoretical estimation. From the second simulation of the electron beam with finite width, we found that the beams are confined along the magnetic field and the electromagnetic waves are generated forward of the electron beams. Some fraction of the electrons are accelerated more than the initial beam velocity. From the third simulation where the electron beams propagate into the high density region, we found that strong electromagnetic waves are generated backward to the electron beams. We also found that the higher frequency emission like 405 GHz, which originate in the strong magnetic field region, becomes stronger than the 212 GHz emission, as shown in the observation by Kaufmann et al. (2004). These simulation results could be applied to the electromagnetic wave emission from the solar photosphere during the solar flares.
Key words: radiation mechanisms: general / plasmas / radiation mechanisms: non-thermal / methods: numerical / Sun: radio radiation
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.