Issue |
A&A
Volume 457, Number 1, October I 2006
|
|
---|---|---|
Page(s) | 167 - 170 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20065335 | |
Published online | 12 September 2006 |
Effective grain surface area in the formation of molecular hydrogen in interstellar clouds
1
S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata, 700098, India e-mail: chakraba@bose.res.in
2
Centre for Space Physics, Chalantika 43, Garia Station Rd., Kolkata, 700084, India e-mail: [ankan;acharyya]@csp.res.in
3
Maharaja Manindra Chandra College, 20 Ramkanta Bose Street, Kolkata, 700003, India e-mail: sonali@csp.res.in
Received:
31
March
2006
Accepted:
6
June
2006
Aims.In interstellar clouds, molecular hydrogens are formed from atomic hydrogen on grain surfaces. An atomic hydrogen hops around until it finds another one with which it combines. This necessarily implies that the average recombination time, or equivalently, the effective grain surface area depends on the relative numbers of atomic hydrogen influx rate and the number of sites on the grain. Our aim is to discover this dependency.
Methods.We perform a numerical simulation to study the recombination of hydrogen on grain surfaces in a variety of cloud conditions. We use a square lattice (with a periodic boundary condition) of various sizes on two types of grains, namely, amorphous carbon and olivine.
Results.We find that the steady state results of our simulation match very well with those obtained from a
simpler analytical considerations provided the “effective” grain surface area is
written as ~ , where S is the actual physical grain area and α is a function of the flux of atomic hydrogen, which is determined from our
simulation. We carry out the simulation
for various astrophysically relevant accretion rates. For high accretion rates, small
grains tend to become partly saturated with H and H2, and the subsequent
accretion will be partly inhibited. For very low accretion rates, the number of sites to be
swept before a molecular hydrogen can form is too large compared to the actual number
of sites on the grain, implying that α is greater than unity.
Key words: ISM: molecules / astrochemistry / methods: numerical
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.