Issue |
A&A
Volume 456, Number 3, September IV 2006
|
|
---|---|---|
Page(s) | 1013 - 1026 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20054312 | |
Published online | 06 September 2006 |
Modeling the NIR-silhouette massive disk candidate in M 17
1
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [stein;semenov]@mpia.de
2
Astronomisches Rechen-Institut am Zentrum für Astronomie Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
3
Astronomisches Institut, Ruhr-Universität Bochum, 44780 Bochum, Germany e-mail: [chini;nielbock;hoffmeister]@astro.rub.de
4
European Southern Observatory, Casilla 19001, Santiago 19, Chile e-mail: dnuernbe@eso.org
5
ERA/L3AB/Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, 33270 Floirac, France e-mail: jean-marc.hure@obs.u-bordeaux1.fr
6
Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
7
LUTh/Observatoire de Paris-Meudon (research associate), Place Jules Janssen, 92195 Meudon Cedex, France
Received:
6
October
2005
Accepted:
23
May
2006
Aims.The physical properties of the massive disk candidate in the star-forming region M 17 are analyzed.
Methods.Making use of the rare configuration in which the gas and dust structure is seen in silhouette
against the background radiation at m, we determine the column
density distribution from a high-resolution NAOS/CONICA image.
The influence of scattered light on the mass determination is analyzed
using 3D radiative transfer calculations.
Further upper flux limits derived from observations with the Spitzer telescope
at MIR wavelengths are used together with the NACO image to estimate the flux from the central
object. For a range of stellar radii, stellar surface temperatures, and dust
grain sizes, we apply three different models to account for the observed fluxes.
The stability of the disk against self-gravitational forces is
analyzed calculating the ratio of the gravitational acceleration by
the central object and the disk, and the deviations from a Keplerian profile.
Results.We find that the column density is consistent with a central source
surrounded by a rotationally symmetric distribution of gas and dust.
The extent of the symmetric disk part is about 3000 AU, with a warped
point-symmetrical extension beyond that radius, and therefore larger than
any circumstellar disk yet detected.
The modeling yields a radial density powerlaw exponent of -1.1 indicating a flat radial density distribution, and a large e-folding scale height ratio of about 0.5.
The mass of the entire disk estimated from the column density
is discussed depending on the assumed distance and
the dust model and ranges between 0.02 and 5
.
We conclude that unless a star is located close to the disk in the foreground, scattered light will have little influence on the mass determination.
We present a Spitzer image taken at
m with the disk seen in
emission and identify polycyclic aromatic hydrocarbon (PAH)
emission on the disk surface
excited by the nearby massive stars as a possible source.
Our 3D radiative transfer calculations for the scattered light
image of the central source through an edge-on disk indicate that
the elliptical shape seen in the NACO image does not require the assumption
of a binary system and that it is consistent with a single object.
We derive stellar main sequence masses of several
,
50
, or 10
, depending on our assumptions that the
extinction of the stellar flux is dominated (i) by the outer disk,
(ii) by an inner disk comparable to the disks around intermediate-mass
stars, or (iii) by an inner disk with dominating hot dust emission.
We find that even for a star-disk mass ratio of 1, only the outer parts of the
circumstellar disk may be influenced by self-gravity effects due to the large
e-folding scale height ratio.
Key words: radiative transfer / accretion, accretion disks / stars: formation / stars: circumstellar matter
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.