Issue |
A&A
Volume 456, Number 2, September III 2006
|
|
---|---|---|
Page(s) | 617 - 621 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20065265 | |
Published online | 31 August 2006 |
Self-consistent theory of turbulent transport in the solar tachocline
II. Tachocline confinement
Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK e-mail: n.leprovost@sheffield.ac.uk
Received:
24
March
2006
Accepted:
5
May
2006
Aims.We provide a consistent theory of the tachocline confinement (or anisotropic momentum transport) within a hydrodynamical turbulence model. The goal is to explain helioseismological data, which show that the solar tachocline thickness is at most 5% of the solar radius, despite the fact that, due to radiative spreading, this transition layer should have thickened to a much more significant value during the sun's evolution.
Methods.Starting from the first principle with the physically plausible assumption that turbulence is driven externally (e.g. by plumes penetrating from the convection zone), we derive turbulent (eddy) viscosity in the radial (vertical) and azimuthal (horizontal) directions by incorporating the crucial effects of shearing due to radial and latitudinal differential rotations in the tachocline.
Results.We show that the simultaneous presence of both shears effectively induces a much more efficient momentum transport in the horizontal plane than in the radial direction. In particular, in the case of strong radial turbulence (driven by overshooting plumes from the convection zone),
the ratio of the radial to horizontal eddy viscosity is proportional to , where
is the strength of the shear due to radial differential rotation. In comparison, in the case of horizontally driven turbulence, this ratio becomes of order
, with negative radial eddy viscosity. Here, ϵ (
) is the ratio of the radial to latitudinal shear. The resulting anisotropy in momentum transport could thus be strong enough to operate as a mechanism for the tachocline confinement against spreading.
Key words: turbulence / Sun: interior / Sun: rotation
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.