Issue |
A&A
Volume 455, Number 3, September I 2006
|
|
---|---|---|
Page(s) | 1059 - 1072 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20064802 | |
Published online | 16 August 2006 |
CS 30322-023: an ultra metal-poor TP-AGB star?
1
GRAAL, UMR 5024 CNRS, Université de Montpellier-II, France e-mail: ajorisse@astro.ulb.ac.be
2
Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Bruxelles, Belgium
3
Department of Physics and Astronomy, Center for the Study of Cosmic Evolution (CSCE) and Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824-1116, USA
4
European Southern Observatory, K. Schwarzschild Straße 2, 85748 Garching bei München, Germany
Received:
3
January
2006
Accepted:
5
May
2006
Context.The remarkable properties of CS 30322-023 became apparent during the course of a high-resolution spectroscopic study of a sample of 23 carbon-enhanced, metal-poor (CEMP) stars.
Aims.This sample is studied in order to gain a better understanding of s- and r-process nucleosynthesis at low metallicity, and to investigate the role of duplicity.
Methods.High-resolution UVES spectra have been obtained, and abundances are derived using 1-D, plane-parallel OSMARCS models under the LTE hypothesis. The derived atmospheric parameters and observed abundances are compared to evolutionary tracks and nucleosynthesis predictions to infer the evolutionary status of CS 30322-023.
Results.CS 30322-023 is
remarkable in having the lowest surface gravity () among
the metal-poor stars studied to date. As a result of its rather low
temperature (4100 K), abundances could be derived for 35 chemical
elements; the abundance pattern of CS 30322-023 is one of the
most well-specified of all known extremely metal-poor stars. With
,
CS 30322-023 is the most metal-poor star to exhibit a clear s-process signature,
and the most metal-poor “lead star” known. The available evidence
indicates that CS 30322-023 is presently a thermally-pulsing asymptotic giant branch (TP-AGB)
star, with no strong indication of binarity thus far (although a signal of period
192 d is clearly present in the radial-velocity data, this is likely
due to pulsation of the stellar envelope).
Low-mass TP-AGB stars are not expected to be exceedingly rare in a
magnitude-limited sample such as the HK survey, because their high luminosities
make it
possible to sample them over a very large volume.
The strong N overabundance and the low 12C/13C ratio (4)
in this star is typical of the operation of the CN cycle.
Coupled with a Na overabundance and the absence of a strong C overabundance, this
pattern seems to imply that hot-bottom burning operated in this star,
which should then have a mass of at least 2
. However, the luminosity associated with
this mass would put the
star at a distance of about 50 kpc, in the outskirts of the galactic
halo, where no recent star formation is expected to have taken place.
We explore alternative scenarios in which the observed abundance pattern results
from some mixing mechanism yet to be identified occurring in a single
low-metallicity 0.8
AGB star, or from pollution by matter from an
intermediate-mass AGB companion which has undergone hot-bottom burning. We stress,
however, that our abundances may be subject to uncertainties due to NLTE or
3D granulation effects which were not taken into consideration.
Key words: stars: AGB and post-AGB / stars: carbon / stars: evolution / stars: individual: CS 30322-023 / Galaxy: halo
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.