Issue |
A&A
Volume 454, Number 3, August II 2006
|
|
---|---|---|
Page(s) | 741 - 752 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20054344 | |
Published online | 17 July 2006 |
The structure and X-ray radiation spectra of illuminated accretion disks in AGN
III. Modeling fractional variability
1
Astronomical Institute, Academy of Sciences of the Czech Republic, Bočni II 1401, 14131 Prague, Czech Republic e-mail: [goosmann;dovciak]@astro.cas.cz; vladimir.karas@cuni.cz
2
Observatoire de Paris, Section de Meudon, LUTH, 5 place Jules Janssen, 92195 Meudon Cedex, France e-mail: [martine.mouchet;anne-marie.dumont]@obspm.fr
3
Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland e-mail: [bcz;agata]@camk.edu.pl
4
Laboratoire Astroparticules et Cosmologie, Université Denis Diderot, 2 place Jussieu, 75251 Paris Cedex 05, France
5
Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: ponti@bo.iasf.cnr.it
6
INAF – IASF Sezione di Bologna, via Gobetti 101, 40129 Bologna, Italy
7
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
Received:
12
October
2005
Accepted:
18
March
2006
Context.Random magnetic flares above the accretion disks of Active Galactic Nuclei can account for the production of the primary radiation and for the rapid X-ray variability that have been frequently observed in these objects. The primary component is partly reprocessed in the disk atmosphere, forming a hot spot underneath the flare source and giving rise to distinct spectral features.
Aims.Extending the work of Czerny et al. (2004, A&A, 420, 1), we model the fractional variability amplitude due to distributions of hot spots co-orbiting on the accretion disk around a supermassive black hole. We compare our results to the observed fractional variability spectrum of the Seyfert galaxy MCG-6-30-15.
Methods.According to defined radial distributions, our code samples
random positions for the hot spots across the disk. The local spot
emission is computed as reprocessed radiation coming from a compact
primary source above the disk. The structure of the hot spot and the
anisotropy of the re-emission are taken into account. We compute the
fractional variability spectra expected from such spot ensembles and
investigate dependencies on the parameters describing the radial spot
distribution. We consider the fractional variability
with respect to the spectral mean and the so-called point-to-point definition
. Our method includes relativistic corrections due to the curved
space-time in the vicinity of a rotating supermassive black hole at the disk
center; the black hole's angular momentum is a free parameter and is subject
to the fitting procedure.
Results.We confirm that the rms-variability spectra involve
intrinsic randomness at a significant level when the number of flares
appearing during the total observation time is too small. Furthermore,
the fractional variability expressed by is not always
compatible with
. In the special case of MCG-6-30-15,
we can reproduce the short-timescale variability and model the
suppressed variability in the energy range of the Kα line
without any need to postulate reprocessing farther away from the
center. The presence of the dip in the variability spectrum requires
an increasing rate of energy production by the flares toward the
center of the disk. The depth of the feature is well represented only
if we assume a fast rotation of the central black hole and allow for
considerable suppression of the primary flare emission. The modeled
line remains consistent with the measured equivalent width of the iron
Kα line complex. The model can reproduce the frequently
observed suppression of the variability in the spectral range around
6.5 keV, thereby setting constraints on the black hole spin and on the
disk inclination.
Key words: radiative transfer / accretion, accretion disks / galaxies: active / galaxies: Seyfert / X-rays: galaxies
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.