Issue |
A&A
Volume 453, Number 3, July III 2006
|
|
---|---|---|
Page(s) | 773 - 783 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20064973 | |
Published online | 28 June 2006 |
Gravitational effects on the high energy emission of accreting black holes
Centre d'Étude Spatiale des Rayonnements, CNRS-UPS, 9 avenue du Colonel Roche, 31028 Toulouse Cedex 4, France e-mail: suebsuwo@cesr.fr
Received:
6
February
2006
Accepted:
15
March
2006
Context.We extend the investigation of general relativistic effects on the observed X-ray continuum of Kerr black holes in the context of the light bending model (Miniutti & Fabian 2004).
Aims. Assuming a ring-like illuminating source, co-rotating with the underlying accretion disk, we study the shape and normalisation of the primary and disc reflected continuum as well as the dependence of the observed spectrum on the line of sight for various source heights and radii.
Methods. These calculations are performed using Monte-Carlo methods to compute the angle dependent reflection spectrum from the disc. The effects of general relativity are illustrated by a comparison with Newtonian and Special Relativity calculations.
Results. Relativistic distortions can strongly affect the shape of
the reflected spectrum. Light bending can dramatically increase
the observable reflected flux and reduce the primary emission.
In addition, multiple reflections due to the reflected photons deflected
toward the disc can alter significantly the shape of the spectrum above 10 keV.
We explore the predicted variations of
the observed reflected and primary fluxes with the height and radius of the source.
Large variations of the ring radius at constant height can lead to
an (unobserved) anti-correlation between primary and reflected flux.
In another side, the variability behaviour of several sources can be reproduced
if the ring source radius is
small (<), and its height varies by a large factor.
In particular, a non-linear
flux-flux relation, similar to that observed in several sources, can be produced.
We compare our model with the flux-flux plot of NGC 4051, and
find an agreement for low inclination angles (<
),
ring source radius
3 rg
and a height varying between 0.5 to 10 rg.
Regarding the angular distribution of the radiation, we
find some important qualitative differences with respect to the Newtonian case.
The reflected flux at larger inclination is relatively stronger than in the
Newtonian model, the reflection fraction increasing with inclination.
Key words: accretion, accretion discs / black hole physics / gravitation / methods: numerical / relativity / X-rays: galaxies
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.