Issue |
A&A
Volume 452, Number 2, June III 2006
|
|
---|---|---|
Page(s) | 623 - 630 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20054643 | |
Published online | 22 May 2006 |
What is the spatial distribution of magnetic helicity injected in a solar active region?
1
LESIA, Observatoire de Paris-Meudon, UMR 8109 (CNRS), 92195 Meudon Cedex, France e-mail: [etienne.pariat;pascal.demoulin]@obspm.fr
2
Université Paris 7, Denis Diderot, 75251 Paris Cedex 05, France
3
Section of Astrogeophysics, Department of Physics, University of Ioannina, 45110, Greece e-mail: anindos@cc.uoi.gr
4
Department of Mathematics, University College London, UK e-mail: m.berger@ucl.ac.uk
Received:
5
December
2005
Accepted:
26
February
2006
Context.Magnetic helicity is suspected to play a key role in solar phenomena such as flares and coronal mass ejections. Several investigations have recently computed the photospheric flux of magnetic helicity in active regions. The derived spatial maps of the helicity flux density, called GA, have an intrinsic mixed-sign patchy distribution.
Aims. Pariat et al. (2005) recently showed that GA is only a proxy of
the helicity flux density, which tends to create spurious polarities.
They proposed a better proxy, . We investigate here the
implications of this new approach on observed active regions.
Methods. The magnetic data are from MDI/SoHO instrument and the photospheric
velocities are computed by local correlation tracking.
Maps and temporal evolution of GA and are compared using
the same data set for 5 active regions.
Results. Unlike the usual GA maps, most of our maps show
almost unipolar spatial structures because the nondominant helicity
flux densities
are significantly suppressed.
In a few cases, the
maps still contain spurious
bipolar signals. With further modelling we infer that the real
helicity flux density is again unipolar.
On time-scales larger than their transient temporal variations, the
time evolution of the total helicity fluxes derived from GA and
show small differences. However, unlike GA,
with
the time
evolution of the total flux is determined primarily by the
predominant-signed flux while the nondominant-signed flux is roughly
stable and probably mostly due to noise.
Conclusions.Our results strongly support the conclusion that the spatial distribution of helicity injected into active regions is much more coherent than previously thought: on the active region scale the sign of the injected helicity is predominantly uniform. These results have implications for the generation of the magnetic field (dynamo) and for the physics of both flares and coronal mass ejections.
Key words: Sun: magnetic fields / Sun: photosphere / Sun: Corona
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.