Issue |
A&A
Volume 452, Number 1, June II 2006
|
|
---|---|---|
Page(s) | L1 - L5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:20064989 | |
Published online | 17 May 2006 |
Letter to the Editor
The history and future of the Local and Loop I bubbles
1
Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, 1180 Wien, Austria e-mail: breitschwerdt@astro.univie.ac.at
2
Department of Mathematics, University of Évora, R. Romão Ramalho 59, 7000 Évora, Portugal e-mail: mavillez@galaxy.lca.uevora.pt
Received:
9
February
2006
Accepted:
30
March
2006
Context.The Local and Loop I superbubbles are the closest and best investigated supernova (SN) generated bubbles and serve as test laboratories for observations and theories of the interstellar medium.
Aims.Since the morphology and dynamical evolution of bubbles depend on the ambient density and pressure distributions, a realistic modelling of the galactic environment is crucial for a detailed comparison with observations.
Methods.We have performed 3D high resolution (down to 1.25 pc on a kpc-scale grid) hydrodynamic simulations of the Local Bubble (LB) and the neighbouring Loop I (L1) superbubble in a realistically evolving inhomogeneous background ISM, disturbed already by SN explosions at the Galactic rate for 200 Myr before the LB and L1 are generated. The LB is the result of 19 SNe occurring in a moving group, which passed through the present day local Hi cavity.
Results.We can reproduce (i) the Ovi column density in absorption within
the LB in agreement with Copernicus and recent
fuse observations, giving and
, respectively; (ii) the observed sizes of the Local and
Loop I superbubbles; (iii) the interaction shell between LB and L1,
discovered with ROSAT; (iv) constrain the age of the LB to be
Myr; (v) predict the merging of the two
bubbles in about 3 Myr, when the interaction shell starts to
fragment; (vi) the generation of blobs like the Local Cloud as a
consequence of a dynamical instability.
Conclusions.We find that evolving superbubbles strongly deviate from idealised self-similar solutions due to ambient pressure and density gradients, as well as due to turbulent mixing and mass loading. Hence, at later times the hot interior can break through the surrounding shell, which may also help to explain the puzzling energy “deficit” observed in LMC bubbles.
Key words: hydrodynamics / shock waves / ISM: general / ISM: bubbles / ISM: structure / ISM: kinematics and dynamics
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.