Issue |
A&A
Volume 450, Number 2, May I 2006
|
|
---|---|---|
Page(s) | 833 - 853 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20054551 | |
Published online | 10 April 2006 |
On the evolution of multiple protoplanets embedded in a protostellar disc
Astronomy Unit, Queen Mary, University of London, Mile End Rd, London, E1 4NS, UK e-mail: P.Cresswell@qmul.ac.uk
Received:
19
November
2005
Accepted:
17
January
2006
Context.Theory predicts that low mass protoplanets in a laminar protostellar
disc will migrate into the central star prior to disc dispersal.
It is known that protoplanets on orbits with
eccentricity , where H is the disc scale height and
r is the radius, can halt or reverse their migration.
Aims.We examine whether a system of interacting protoplanetary cores can excite and sustain significant eccentricity of the population, allowing some planetary cores to survive in the disc over its lifetime.
Methods.We employ two distinct numerical schemes: an N-body code, adapted to include migration and eccentricity damping due to the gas disc via analytic prescriptions, and a hydrodynamics code that explicitly evolves a 2D protoplanetary disc model with embedded protoplanets. The former allows us to study the long term evolution, the latter to model the systems with greater fidelity but for shorter times.
Results.After a brief period of chaotic interaction between the
protoplanets that involves scattering, orbital exchange, collisions
and the formation of co-orbital planets, we find that the system settles
into a quiescent state of inward migration.
Differential migration causes the protoplanets to form a series of
mean motion resonances, such that a planet is often in resonance with both its
interior and exterior neighbours. This helps prevent close encounters and
leads to the protoplanetary swarm, or subgroups within it,
migrating inward at a uniform rate.
In about of runs a single planet is scattered onto a distant orbit
with significant eccentricity, allowing it to survive in the disc for
years.
Over
of runs produce co-orbital planets that survive
for the duration of the simulation, occupying mutual horseshoe or tadpole
orbits.
Conclusions.Disc-induced damping overwhelms eccentricity growth through planet-planet interactions, such that a protoplanetary swarm migrates inward. We suggest co-orbital planets may be observed in future exoplanet searches.
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.