Issue |
A&A
Volume 447, Number 2, February IV 2006
|
|
---|---|---|
Page(s) | 533 - 544 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361:20054070 | |
Published online | 07 February 2006 |
Molecular cloud shredding in the Galactic Bar
National Radio Astronomy Observatory, 520 Edgemont Road, 22903-2475 Charlottesville, VA, USA e-mail: hliszt@nrao.edu
Received:
18
August
2005
Accepted:
13
October
2005
Seen just outside the innermost regions of the galactic center, the
kinematics of molecular gas are dominated by a handful of compact but
unusually broad-lined features of enigmatic origin. We show, using
previous data, that there is a family of such features whose members
are distinguished morphologically by their extreme vertical
extension, perpendicular to the inclined plane of the overall gas tilt.
Having isolated the features spatially, we mapped them with varying
degrees of completeness at high resolution (1´) in lines of 12CO, 13CO and CS. Although very broad profiles exist in some individual beams, more generally we resolved the kinematics into spatial gradients which earlier were smeared in broader beams to form wider
lines. The largest apparent velocity gradients are typically with
respect to galactic latitude but motions are confined to the range of
velocities inside the galactic terminal velocity, indicating that it
is the galactic gravitational potential which is being tapped to create
the observed kinematics.
We interpret the broad-lined features qualitatively in terms of recent
hydrodynamical models of gas flow in strongly barred galaxies: standing shocks
which occur where gas enters the Galactic dust lane can account
for the presence of broad lines over small spatial volumes wherever
molecular gas is actually engaged in this process. To interpret
the dynamical sequencing of the complex behaviour seen within the
broad-line features we discuss how the Sun must be oriented with respect
to the bar. In doing so, we identify the nuclear star-forming rings
seen in other galaxies with the complex of giant H II regions Sgr A, B, C etc. and show that the kinematics are as expected for a ring of radius 175 pc (for a Sun-center distance of 8.5 kpc) rotating at about 210 km s-1. Gas having clear and strong outward-directed non-circular
motion around ° (the famous “expanding molecular ring”) is
then associated with the “spray” of incoming gas at the inner ends
of the dust lane, defining a more nearly end-on viewing angle for the bar.
Using the inferred geometry, we construct a narrative for the
behaviour of the feature most completely mapped here, at
°, whereby gas basically falls out of the sky
and is concentrated into the observed dense, bright molecular
core before being shredded and sucked into the inflow of
the dust lane 100 pc or more below the nominal galactic equator.
From there it is recycled and lifted back into the more nearly
equatorial region of the nuclear ring. Of course, the vertical
structure of this and the other features, and the overall tilt
of the dust lane and inner-galaxy gas layer, all remain to be
discussed theoretically.
Key words: Galaxy: nucleus / ISM: clouds / ISM: molecules
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.