Issue |
A&A
Volume 445, Number 1, January I 2006
|
|
---|---|---|
Page(s) | L19 - L22 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:200500215 | |
Published online | 13 December 2005 |
Letter to the Editor
A counter-rotating core in the dwarf elliptical galaxy VCC 510
1
University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK e-mail: dthomas@astro.ox.ac.uk
2
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany
3
Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München, Germany
4
INAF, Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122 Padova, Italy
Received:
27
October
2005
Accepted:
13
November
2005
Context.
Aims.We present optical long-slit spectra of the Virgo dwarf elliptical
galaxy VCC 510 at high spectral (km s-1) and spatial
resolution. The principal aim is to unravel its kinematical and
stellar population properties.
Methods.Heliocentric velocities and velocity dispersions as functions of galaxy radius are derived by deconvolving line-of-sight velocity distributions. The luminosity-weighted stellar population parameters age and element abundances are obtained by comparison of Lick absorption-line indices with stellar population models.
Results.A maximum rotation km s-1 inside half the
effective radius (
) and a mean, radially flat
velocity dispersion
km s-1 are measured. The core
extending over the inner 2´´ (
pc) is found to
rotate in the opposite sense with
. VCC 510 (
) is therefore by far
the faintest and smallest galaxy with a counter-rotating core
known. From the main body rotation and the velocity dispersion
profile we deduce that VCC 510 is anisotropic and clearly not
entirely supported by rotation. We derive an old
luminosity-weighted age (
Gyr) and sub-solar metallicity
(
) inside the effective radius. There is
tentative evidence that the counter-rotating core might be younger
and less
enhanced. From the stellar population parameters we
obtain a total stellar mass-to-light ratio of
which is significantly lower than a rough
dynamical estimate obtained from the kinematics through the virial
theorem (
). This discrepancy hints toward the possible
presence of dark matter in the centre of VCC 510.
Conclusions.We discuss the origin of the counter-rotating core and exclude fly-by encounters as a viable possibility. Gas accretion or galaxy merging provide more likely explanations. VCC 510 is therefore the direct observational evidence that such processes do occur in cluster satellite galaxies on dwarf galaxy scales.
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.