Issue |
A&A
Volume 441, Number 1, October I 2005
|
|
---|---|---|
Page(s) | 289 - 302 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20047013 | |
Published online | 13 September 2005 |
The enigmatic B[e]-star Henize 2-90: the non-spherical mass loss history from an analysis of forbidden lines
1
Astronomical Institute, Utrecht University, Princetonplein 5, NL 3584 CC Utrecht, The Netherlands e-mail: M.Kraus@phys.uu.nl; lamers@astro.uu.nl
2
Observatório Nacional-MCT, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro, Brazil e-mail: [borges; araujo]@on.br
Received:
5
January
2004
Accepted:
29
April
2005
We study the optical spectrum of the exciting B[e] star Hen 2-90
based on new high-resolution observations that cover the innermost 2´´ of this object whose total extent is more than 3´´.
Our investigation is split in two parts, (i) a
qualitative study of the presence of the numerous emission lines and
classification of their line profiles, which indicate a circumstellar environment of
high complexity, (ii) and a quantitative analysis of numerous forbidden lines, e.g.
[Oi], [Oii], [Oiii], [Sii], [Siii], [Ariii],
[Clii], [Cliii], and [Nii].
We find correlation between the different ionization states of the elements and
the velocities derived from the line profiles: the highly ionized atoms have the
highest outflow velocity, while the neutral lines have the lowest.
The recent HST image of Hen 2-90 (Sahai et al. 2002, ApJ, 573, L123) reveals a bipolar,
highly ionized region, a neutral disk-like structure, and an intermediate region of
moderate ionization. This HST image covers about the same innermost regions as our
observations. When combining the velocity information with the HST image of Hen
2-90, it seems that a non-spherical stellar wind model is a good option to
explain the ionization and spatial distribution of the circumstellar material.
Such a wind might expand into the cavity formed during the AGB phase of the
star, which is still visible as a large nebula, seen
e.g. on Hα plates. We modelled the forbidden lines under the assumption of
a non-spherically symmetric wind that can be split into a polar, a disk forming,
and an intermediate wind, based on the HST image. We find that in order to fit the
observed line luminosities, the mass flux, surface temperature, and terminal
wind velocities need to be latitude dependent, which might be explained in terms
of a rapidly rotating central star. A rotation speed of 75–80% of the critical velocity
was derived from the terminal velocities extracted from the observed line wings
considering the inclination of the system as suggested from the HST image.
The total mass loss rate of the star was determined to
be on the order of yr-1.
The combination of this wind scenario and the underabundance of
C, O, and N in comparison to the solar abundance of
S, Ar, and Cl might be explained in terms of a
rapidly rotating post-AGB star.
Key words: stars: mass-loss / ISM: planetary nebulae: individual: Hen 2-90 / line: identification / methods: data analysis
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.