Issue |
A&A
Volume 438, Number 1, July IV 2005
|
|
---|---|---|
Page(s) | 87 - 101 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20052753 | |
Published online | 06 July 2005 |
Star formation rates and mass distributions in interacting galaxies
Institut für Astrophysik, Leopold-Franzens-Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria e-mail: wolfgang.e.kapferer@uibk.ac.at
Received:
24
January
2005
Accepted:
22
March
2005
We present a systematic investigation of the star formation rate (hereafter SFR) in interacting disk galaxies. We determine the dependence of the overall SFR on different spatial alignments and impact parameters of more than 50 different configurations in combined N-body/hydrodynamic simulations. We also show mass profiles of the baryonic components. We find that galaxy–galaxy interactions can enrich the surrounding intergalatic medium with metals very efficiently up to distances of several 100 kpc. This enrichment can be explained in terms of indirect processes like thermal-driven galactic winds or direct processes like “kinetic” spreading of baryonic matter. In the case of equal mass mergers the direct–kinetic- redistribution of gaseous matter (after 5 Gyr) is less efficient than the environmental enrichment of the same isolated galaxies by a galactic wind. In the case of non-equal mass mergers however, the direct–kinetic- process dominates the redistribution of gaseous matter. Compared to the isolated systems, the integrated star formation rates (ISFRs) () in the modelled interacting galaxies are in extreme cases a factor of 5 higher and on average a factor of 2 higher in interacting galaxies. Co-rotating and counter-rotating interactions do not show a common trend for the enhancement of the ISFRs depending on the interaction being edge-on or face-on. The latter case shows an increase of the ISFRs for the counter-rotating system of about 100%, whereas the edge-on counter-rotating case results in a lower increase (~10%). An increase in the minimum separation yields only a very small decrease in the ISFR after the first encounter. If the minimum separation is larger than ~ the disk scale length Rd the second encounter does not provide an enhancement for the ISFR.
Key words: hydrodynamics / methods: numerical / galaxies: interactions / galaxies: general / intergalactic medium / galaxies: evolution
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.