EDP Sciences
Free Access
Volume 437, Number 1, July I 2005
Page(s) 31 - 38
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361:20041192
Published online 10 June 2005

A&A 437, 31-38 (2005)
DOI: 10.1051/0004-6361:20041192

The XMM-Newton $\mathsf{\Omega}$ project

III. Gas mass fraction shape in high redshift clusters
R. Sadat1, A. Blanchard1, S. C. Vauclair1, D. H. Lumb2, J. Bartlett3, A. K. Romer4, J.-P. Bernard5, M. Boer6, P. Marty7, J. Nevalainen8, D. J. Burke8, C. A. Collins9 and R. C. Nichol10

1  Laboratoire d'Astrophysique de Tarbes et Toulouse, OMP, CNRS, UMR 5572, UPS, 14 avenue E. Belin, 31400 Toulouse, France
    e-mail: alain.blanchard@ast.obs-mip.fr
2  Advanced Concepts and Science Payloads Office, European Space Agency, ESTEC, 2200AG Noordwijk, The Netherlands
3  Laboratoire de Physique Corpusculaire et Cosmologie, Collège de France, 11 pl. Marcelin Berthelot, 75231 Paris Cedex 5, France
4  Astronomy Center, Department of Physics and Astronomy, University of Sussex Falmer, Brighton BN19QH, UK
5  Centre d'étude spatiale des rayonnements, OMP, UPS, 9 Av. du Colonel Roche, BP 4346, 31028 Toulouse, France
6  Observatoire de Haute Provence, 04870 Saint Michel l'Observatoire, France
7  Institut d'Astrophysique Spatiale, Bât. 121, Université Paris Sud XI, 91 405 Orsay Cedex, France
8  Harvard-Smithsonian Center for Astrophysics, 60 Garden street, Cambridge, MA 02138, USA
9  Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK
10  Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

(Received 29 April 2004 / Accepted 21 February 2005 )

We study the gas mass fraction behavior in distant galaxy clusters observed within the $\mbox{\it XMM-Newton}$ $\Omega$ project. The typical gas mass fraction $f_{\rm gas}$ shape of high redshift galaxy clusters follows the global shape inferred at low redshift quite well, once scaled appropriately: the gas mass fraction increases with radius and flattens outward. This result is consistent with the simple picture in which clusters essentially form by gravitational collapse, leading to self similar structures for both the dark and baryonic matter. However, we find that the mean gas profile in distant clusters shows some differences to local ones, indicating a departure from strict scaling. Assuming an Einstein-de Sitter cosmology, we find a slight deficit of gas in the central part of high-z clusters. This result is consistent with the observed evolution in the luminosity-temperature relation. We quantitatively investigate this departure from scaling laws by comparing $f_{\rm gas}$ from a sample of nearby galaxy clusters (Vikhlinin et al. 1999) to our eight high-z clusters. Within the local sample, a moderate but clear variation of the amplitude of the gas mass fraction with temperature is found, a trend that weakens in the outer regions. Taking into account these variations with radius and temperature, the apparent scaled gas mass fractions in our distant clusters still systematically differ from local clusters. This reveals that the gas fraction does not strictly follow a scaling law with redshift. This provides clues to understand the redshift evolution of the L-T relation whose origin is probably due to non-gravitational processes during cluster formation. An important implication of our results is that the gas fraction evolution, a test of the cosmological parameters, can lead to biased values when applied at radii smaller than the virial radius. From our XMM clusters, as well as ${\it Chandra}$ clusters in the same redshift range, the apparent gas fraction at the virial radius obtained by extrapolation of the inner gas profile is consistent with a non-evolving universal value in a high matter density model while in a concordance model, high redshift clusters show an apparent higher $f_{\rm gas}$ at the virial radius than local clusters.

Key words: galaxies: clusters: general -- galaxies: intergalactic medium -- cosmology: cosmological parameters -- dark matter -- X-rays: galaxies: clusters

SIMBAD Objects in preparation

© ESO 2005

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.