Issue |
A&A
Volume 435, Number 3, June I 2005
|
|
---|---|---|
Page(s) | 1115 - 1122 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20042509 | |
Published online | 13 May 2005 |
Vector magnetic field map at the photospheric level below and around a solar filament (neutral line)
1
Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique, CNRS UMR 8112 – LERMA, Observatoire de Paris, Section de Meudon, 92195 Meudon, France e-mail: v.bommier@obspm.fr
2
Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique, CNRS UMR 8109 – LESIA, Observatoire de Paris, Section de Meudon, 92195 Meudon, France
3
THEMIS S.L., via Lactea s/n, 38200 La Laguna, Tenerife, Islas Canarias, Spain
Received:
30
August
2004
Accepted:
17
January
2005
We present a vector magnetic field map obtained on 7 December 2003, below and around a filament located not so far from the active region NOAA 517, whose one spot is also found on the map of arcsec. This region was itself located near the disk center, so that the longitudinal (resp. transverse) field is nearly the vertical (resp. horizontal) one. The THEMIS telescope was used in its spectropolarimetric multiline mode MTR (“MulTiRaies”). The noise level is 5-10 Gauss in the longitudinal field and 50-100 Gauss in the transverse field, while the pixel size is 0.45 arcsec. Fundamental ambiguity is not solved, and the atmosphere is assumed to be homogeneous. The magnetic field derivation method described in this paper was validated on eight test points submitted to the UNNOFIT inversion code, and the results are found in agreement within 14% discrepancy. Two main results appear on the map: (i) a strong spatial correlation between the longitudinal and transverse field resulting in an inclined field vector (making a most probable angle of or with the line-of-sight in the filament region); and (ii) homogeneity of the field direction (inclination and azimuth) in the filament region. Parasitic polarities were also detected: first those located at the filament feet, as theoretically expected, on the one hand; and then weak opposite polarity regular patterns that appear between the network field (strong field at the frontiers of supergranules), on the other. The exact superimposition of the magnetic field map derived from the 6302.5 Å line and of the Hα map, which enabled association of the parasitic polarities with the filament feet, was possible because these two maps were simultaneously obtained, thanks to a unique facility available in the multiline mode of THEMIS.
Key words: Sun: magnetic fields / polarization / Sun: filaments / Sun: prominences
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.