Issue |
A&A
Volume 435, Number 3, June I 2005
|
|
---|---|---|
Page(s) | 1105 - 1113 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20042436 | |
Published online | 13 May 2005 |
Particle-In-Cell simulations of circularly polarised Alfvén wave phase mixing: A new mechanism for electron acceleration in collisionless plasmas
1
Institute for Materials Research, School of Computing, Science and Engineering, University of Salford, Salford, Greater Manchester, M5 4WT, UK
2
Laboratory for Plasma Astrophysics, Faculty of Engineering, Toyama University, 3190, Gofuku, Toyama, 930-8555, Japan
Received:
25
November
2004
Accepted:
9
January
2005
In this work we used Particle-In-Cell simulations to study the interaction of circularly polarised Alfvén waves with one dimensional plasma density inhomogeneities transverse to the uniform magnetic field (phase mixing) in collisionless plasmas. In our preliminary work we reported discovery of a new electron acceleration mechanism, in which progressive distortion of the Alfvén wave front, due to the differences in local Alfvén speed, generates an oblique (nearly parallel to the magnetic field) electrostatic field. The latter accelerates electrons through the Landau resonance. Here we report a detailed study of this novel mechanism, including: (i) analysis of broadening of the ion distribution function due to the presence of Alfvén waves; and (ii) the generation of compressive perturbations due to both weak non-linearity and plasma density inhomogeneity. The amplitude decay law in the inhomogeneous regions, in the kinetic regime, is demonstrated to be the same as in the MHD approximation described by Heyvaerts & Priest (1983, A&A, 117, 220).
Key words: Sun: oscillations / Sun: Corona / Sun: solar wind
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.