Issue |
A&A
Volume 435, Number 1, May III 2005
|
|
---|---|---|
Page(s) | 113 - 124 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20041829 | |
Published online | 25 April 2005 |
Evidence for transient clumps and gas chemical evolution in the CS core of L673
1
Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, OH 43210, USA e-mail: omorata@mps.ohio-state.edu
2
Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Catalunya, Spain
3
Institut de Ciències de l'Espai (CSIC) / IEEC, Gran Capità 2, 08034 Barcelona, Catalunya, Spain
Received:
10
August
2004
Accepted:
10
December
2004
We present FCRAO maps as well as combined BIMA and FCRAO maps of the high
density molecular emission towards the CS core in the L673
region. With the FCRAO telescope we mapped the emission in the CS (),
C34S (
), HCO+ (
), and H13CO+ (
) lines.
The high-density molecular emission, which arises from a filamentary
structure oriented in the NW-SE direction, shows clear morphological
differences for each molecule. We find that HCO+ has an extremely high
optical depth, and that the H13CO+ emission is well correlated with
submm sources. The BIMA and FCRAO combined maps recover emission from
structure previously undetected or marginally detected, and show an overall
aspect of a filamentary structure connecting several intense clumps. We
found a total 15 clumps in our combined data cube, all of them resolved at
our angular resolution, with diameters in the 0.03–0.09 pc range. Their
estimated masses range between 0.02 and 0.2
, except for the largest
clump, which has a mass of ~1.2
. We find a clear segregation
between the northern and southern region of the map: the northern section
shows the less chemically evolved gas and less massive but more numerous
clumps, while the southern region is dominated by the largest and most
massive clump, and contains the more evolved gas, as traced by emission of
late-time molecules. We find that the derived clump masses are below the
virial mass, and that the clump masses become closer to the virial mass when
they get bigger and more massive. This supports the idea that these clumps
must be transient, and that only the more massive ones are able to condense
into stars. The clumps we detect are probably in an earlier evolutionary
stage than the “starless cores” reported recently in the literature. Only
the most massive one has properties similar to a “starless core”.
Key words: ISM: individual objects: L673 / ISM: abundances / ISM: clouds / ISM: molecules / radio lines: ISM / stars: formation
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.