Issue |
A&A
Volume 432, Number 1, March II 2005
|
|
---|---|---|
Page(s) | 281 - 294 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20041461 | |
Published online | 22 February 2005 |
Inferring hot-star-wind acceleration from Line Profile Variability
1
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching bei München, Germany e-mail: luc@mpa-garching.mpg.de
2
Bartol Research Institute of the University of Delaware, Newark, DE 19716, USA e-mail: owocki@bartol.udel.edu
Received:
14
June
2004
Accepted:
6
November
2004
The migration of profile sub-peaks identified in time-monitored optical emission
lines of Wolf-Rayet (WR) star spectra provides a direct diagnostic of the
dynamics of their stellar winds via a measured , a
line-of-sight velocity change per unit time. Inferring the associated
wind acceleration scale from such an apparent acceleration
then relies on the adopted intrinsic velocity of the wind material
at the origin of this variable pattern. Such a characterization of
the Line Emission Region (LER) is in principle subject to inaccuracies arising
from line optical depth effects and turbulence broadening.
In this paper, we develop tools to quantify such effects
and then apply these to reanalyze the LER properties of time-monitored
WR stars. We find that most program lines can be fitted well with a pure optically thin
formation mechanism, that the observed line-broadening is dominated by the finite
velocity extent of the LER, and that the level of turbulence inferred through
Line Profile Variability (
) has only a minor broadening effect in the
overall profile. Our new estimates of LER velocity centroids are systematically
shifted outwards closer to terminal velocity compared to previous determinations,
now suggesting WR-wind acceleration length scales
of
the order of
, a factor of a few smaller than
previously inferred.
Based on radiation-hydrodynamics simulations of the line-driven-instability
mechanism, we compute synthetic
for Ciii5696 Å for WR 111.
The results match well the measured observed migration of 20–30 m s-2,
equivalent to
.
However, our model stellar radius of
, typical of an O-type
supergiant, is a factor 2–10 larger than generally expected for WR core radii.
Such small radii leave inferred acceleration scales to be
more extended than expected from dynamical models of line driving,
which typically match a “beta” velocity law
, with
;
but the severity of the discrepancy is substantially reduced compared
to previous analyses. We conclude with a discussion of how using
lines formed deeper in the wind would provide a stronger constraint
on the key wind dynamics in the peak acceleration region, while also
potentially providing a diagnostic on the radial variation of
wind clumping, an issue that remains crucial for reliable determination of
O-star mass loss rates.
Key words: line: formation / radiative transfer / stars: atmospheres / stars: early-type / stars: mass-loss
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.