Issue |
A&A
Volume 431, Number 3, March I 2005
|
|
---|---|---|
Page(s) | 861 - 877 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20041175 | |
Published online | 16 February 2005 |
Large scale inhomogeneity and local dynamical friction
1
Astronomisches Rechen-Institut, Mönchhofstraße 12-14, 69120 Heidelberg, Germany e-mail: just@ari.uni-heidelberg.de
2
Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany
Received:
28
April
2004
Accepted:
19
October
2004
We investigate the effect of a density gradient on Chandrasekhar's dynamical friction formula based on the method of 2-body encounters in the local approximation. We apply these generalizations to the orbit evolution of satellite galaxies in Dark Matter haloes. We find from the analysis that the main influence occurs through a position-dependent maximum impact parameter in the Coulomb logarithm, which is determined by the local scale-length of the density distribution. We also show that for eccentric orbits the explicit dependence of the Coulomb logarithm on position yields significant differences for the standard homogeneous force. Including the velocity dependence of the Coulomb logarithm yields ambigous results. The orbital fits in the first few periods are further improved, but the deviations at later times are much larger. The additional force induced by the density gradient, the inhomogeneous force, is not antiparallel to the satellite motion and can exceed 10% of the homogeneous friction force in magnitude. However, due to the symmetry properties of the inhomogeneous force, there is a deformation and no secular effect on the orbit at the first order. Therefore the inhomogeneous force can be safely neglected for the orbital evolution of satellite galaxies. For the homogeneous force we compare numerical N-body calculations with semi-analytical orbits to determine quantitatively the accuracy of the generalized formulae of the Coulomb logarithm in the Chandrasekhar approach. With the local scale-length as the maximum impact parameter we find a significant improvement of the orbital fits and a better interpretation of the quantitative value of the Coulomb logarithm.
Key words: stellar dynamics / galaxies: kinematics and dynamics / galaxies: interactions / cosmology: dark matter
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.