Issue |
A&A
Volume 431, Number 2, February IV 2005
|
|
---|---|---|
Page(s) | 451 - 464 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20041324 | |
Published online | 04 February 2005 |
Numerical simulations of expanding supershells in dwarf irregular galaxies
II. Formation of giant HI rings
1
Institute of Physics, Stachki 194, Rostov-on-Don, Russia e-mail: eduard_vorobev@mail.ru
2
Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada e-mail: basu@astro.uwo.ca
Received:
19
May
2004
Accepted:
14
October
2004
We perform numerical hydrodynamic modeling of various physical processes that can form an HI ring as is observed in Holmberg I (Ho I). Three energetic mechanisms are considered: multiple supernova explosions (SNe), a hypernova explosion associated with a gamma ray burst (GRB), and the vertical impact of a high velocity cloud (HVC). The total released energy has an upper limit of ~1054 erg. We find that multiple SNe are in general more effective in producing shells that break out of the disk than a hypernova explosion of the same total energy. As a consequence, multiple SNe form rings with a high ring-to-center contrast in the HI column density, whereas single hypernova explosions form rings with . Only multiple SNe can reproduce both the size (diameter ~ kpc) and the ring-to-center contrast () of the HI ring in Ho I. High velocity clouds create HI rings that are much smaller in size ( kpc) and contrast () than seen in Ho I. We construct model position–velocity (pV) diagrams and find that they can be used to distinguish among different HI ring formation mechanisms. The observed pV-diagrams of Ho I (Ott et al. [CITE]) are best reproduced by multiple SNe. We conclude that the giant HI ring in Ho I is most probably formed by multiple SNe. We also find that the appearance of the SNe-driven shell in the integrated HI image depends on the inclination angle of the galaxy. In nearly face-on galaxies, the integrated HI image shows a ring of roughly constant HI column density surrounding a deep central depression, whereas in considerably inclined galaxies () the HI image is characterized by two kidney-shaped density enhancements and a mild central depression.
Key words: galaxies: dwarf / ISM: bubbles
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.