Issue |
A&A
Volume 431, Number 1, February III 2005
|
|
---|---|---|
Page(s) | 45 - 64 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20041191 | |
Published online | 02 February 2005 |
Very light jets II: Bipolar large scale simulations in King atmospheres
1
Landessternwarte Königstuhl, 69117 Heidelberg, Germany e-mail: M.Krause@lsw.uni-heidelberg.de
2
Astrophysics Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK
Received:
29
April
2004
Accepted:
3
August
2004
Hydrodynamic jets, underdense with respect to their environment by a factor of up to 104, were computed in axisymmetry as well as in 3D. They finally reached a size of
up to 220 jet radii, corresponding to a 100 kpc sized radio galaxy.
The simulations are “bipolar”, involving both jets.
These are injected into a King type density profile with small stochastic density variations.
The back-reaction of the cocoons on the beams in the center produces armlength asymmetries
of a few percent, with the longer jets on the side with the higher average density.
Two distinguishable
bow shock phases were observed: an inner elliptical part,
and a later cylindrical, cigar-like phase, which is known from previous simulations.
The sideways motion of the inner elliptical bow shock part is shown to follow the
law of motion for spherical blast waves also in the late phase, where the aspect ratio is high,
with good accuracy.
X-ray emission maps are calculated and the two bow shock phases are shown to appear as rings and
elongated or elliptical regions, depending on the viewing angle.
Such structures are observed in the X-ray data of several radio galaxies (e.g. in Abell 2052
and Hercules A), the best example being
Cygnus A. In this case, an elliptical bow shock is infered from the observations,
a jet power of 1047 erg/s is derived, and
the Lorentz factor can be limited to .
Based on the simulation results and the comparison to the observations,
the emission line gas producing the alignment effect in radio galaxies at high
redshift is suggested to be cooled gas entrained over the cocoon boundary.
Key words: hydrodynamics / instabilities / shock waves / galaxies: active / radio continuum: galaxies / X-rays: galaxies: clusters
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.