Issue |
A&A
Volume 430, Number 3, February II 2005
|
|
---|---|---|
Page(s) | 761 - 769 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20041473 | |
Published online | 26 January 2005 |
Full radiative coupling in two-phase models for accreting black holes
1
Centre d'Étude Spatiale des Rayonnements, CNRS-UPS, 9 avenue du Colonel Roche, 31028 Toulouse Cedex 4, France e-mail: malzac@cesr.fr
2
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK
3
LUTH, UMR 8102 (CNRS/Université Paris 7), Observatoire de Paris, Section de Meudon, 92195 Meudon Cedex, France
Received:
21
January
2003
Accepted:
21
July
2004
The emission from galactic black holes and Seyfert galaxies
is generally understood in term of two-phase models
(Haardt & Maraschi 1991, 1993).
Such models postulate that
a hot plasma (~109 K) coexists with relatively
colder material (~106 K) in the inner part of the accretion flow.
We present the first simulated broad-band spectra
produced by such a system and accounting simultaneously for energy balance
and Comptonisation in the hot phase, together with reflection, reprocessing,
ionization and thermal balance in the cold phase.
This was made possible by coupling three radiative transfer codes:
a non-linear Monte-Carlo code (NLMC), a photo-ionization code TITAN and
a linear Monte-Carlo code NOAR. The equilibrium comptonisation
spectrum appears to be sensitive to the shape of the reprocessed
spectrum that, in turn, depends on the ionization parameter, but also
on the structure of the irradiated cold
material. This is illustrated by a comparison of simulations assuming
constant density or a constant pressure in the cold phase.
We also compare our results with simplified
models where reprocessing is approximated by a blackbody spectrum.
Our detailed treatment leads to noticeably different spectral energy distributions (SEDs) characterised
by harder X-ray spectra. Even at low ionization parameters
( erg s-1 cm)
the commonly used blackbody approximation is poor,
leading to X-ray spectra that are too soft.
The effect, however, seems not to be strong enough to reconcile the slab
corona model with the hardest observed spectra, unless the
reflector has a constant density and the ionization parameter is
large, of the order of 104 erg s-1 cm.
Key words: accretion, accretion disks / black hole physics / radiative transfer / method: numerical / galaxies: Seyfert / X-ray: binaries
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.