Issue |
A&A
Volume 430, Number 2, February I 2005
|
|
---|---|---|
Page(s) | 585 - 602 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20041628 | |
Published online | 20 January 2005 |
Type Ia Supernova models arising from different distributions of igniting points*
1
Departament de Física i Enginyeria Nuclear, UPC, Sor Eulalia d'Anzizu s/n, B5, 08034 Barcelona, Spain e-mail: [domingo.garcia;eduardo.bravo]@upc.es
2
Institut d'Estudis Espacials de Catalunya, Spain
Received:
9
July
2004
Accepted:
2
September
2004
In this paper we address the theory of type Ia supernovae from the moment of
carbon runaway up to several hours after the explosion. We have concentrated
on the boiling-pot model: a deflagration characterized by the (nearly-) simultaneous ignition of
a number of bubbles that pervade the core of the white dwarf. Thermal
fluctuations larger than 1% of the background temperature
(~
K) on lengthscales of
1 m could be
the seeds of the bubbles. Variations of the homogeneity of
the temperature perturbations can lead to two
alternative configurations at carbon runaway: if the thermal gradient is small,
all the bubbles grow to a common characteristic size related to the value of
the thermal gradient, but if the thermal gradient is large enough, the size spectrum of the bubbles extends over several orders of magnitude. The explosion
phase has been studied with the aid of a smoothed particle hydrodynamics code
suited to simulate thermonuclear supernovae. In spite of important
procedural differences and different physical assumptions, our results converge
with the most recent calculations of three-dimensional deflagrations in white
dwarfs carried out in supernova studies by different groups. For large initial numbers of
bubbles (
3–4 per octant), the explosion produces ~
of
56Ni, and the kinetic energy of the ejecta is ~
ergs.
However, all three-dimensional deflagration models share three main drawbacks:
1) the scarce synthesis of intermediate-mass elements; 2) the loss of
chemical stratification of the ejecta due to mixing by Rayleigh-Taylor
instabilities during the first second of the explosion; and 3) the presence of
big clumps of 56Ni at the photosphere at the time of maximum brightness. On
the other hand, if the initial number of igniting bubbles is small enough, the
explosion fails, the white dwarf oscillates, and a new opportunity comes for
a detonation to ignite and process the infalling matter after the first
pulsation.
Key words: Stars: supernovae: general / hydrodynamics / nuclear reactions, nucleosynthesis, abundances
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.