Issue |
A&A
Volume 429, Number 3, January III 2005
|
|
---|---|---|
Page(s) | 791 - 806 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361:20041479 | |
Published online | 05 January 2005 |
XMM-Newton observations of three poor clusters: Similarity in dark matter and entropy profiles down to low mass
1
CEA/Saclay, Service d'Astrophysique, L'Orme des Merisiers, Bât. 709, 91191 Gif-sur-Yvette Cedex, France
2
MPE Garching, Giessenbachstraße, 85748 Garching, Germany e-mail: gwp@mpe.mpg.de
Received:
16
June
2004
Accepted:
2
September
2004
We present an analysis of the mass and entropy profiles of
three poor galaxy clusters (A1991, A2717 and MKW9) observed with XMM-Newton. The clusters have very similar temperatures (, 2.53 and 2.58 keV), and similar redshifts (
). We trace the surface brightness, temperature, entropy
and integrated mass profiles with excellent precision up to
~
kpc (A1991 and A2717) and ~
kpc (MKW9). This corresponds to
, where r200 is the
radius corresponding to a density contrast of 200 with respect to the
critical density at the cluster redshifts. None of the surface
brightness profiles is well fitted with a single β-model. Double
isothermal β-models provide reasonable fits, and in all cases
the value of the external β parameter is consistent with the
value found for richer clusters. The temperature profiles have central
dips but are approximately flat at the exterior, up to the detection
limit. The integrated mass profiles are very similar in physical units
and are reasonably well fitted with the NFW mass model with
concentration parameters in the range
and
. A King model is inconsistent
with these mass data. The entropy profiles are very similar at large
scale, but there is some scatter in the very central region (
kpc). However, none of the clusters has an isentropic
core.
We then discuss the structural and scaling properties of cluster mass
and entropy profiles, including similar quality data on the
slightly cooler cluster A1983 (
keV), and on the massive
cluster A1413 (
keV). We find that the mass profiles
scaled in units of M200 and r200 nearly coincide, with
20 per cent dispersion in the radial range
, where we
could compare the profiles without excessive extrapolation. We provide
a quantitative test of mass profile shapes by combining the
concentration parameters of these poor clusters with other values of
similar precision from the literature, and comparing with the
relation derived from numerical simulations for a
ΛCDM cosmology. The data are fully consistent with the
predictions, taking into account the measurement errors and expected
intrinsic scatter, in the mass range
. This excellent agreement with
theoretical predictions – a quasi universal cusped mass profile with
concentration parameters as expected – shows that the physics of the
dark matter collapse is basically understood. Scaling the entropy
profiles using the self-similar relation
, we find a
typical scatter of ~30 per cent in scaled entropy in the radial
range
. The dispersion is reduced (~22 per cent) if we use the empirical relation
. The
scatter is nearly constant with radius, indicating a genuine
similarity in entropy profile shape. The averaged scaled profile is
well fitted by a power law for
, with a slope
slightly lower than expected from pure shock heating (
), and a normalisation at
consistent with
previous ROSAT/ASCA studies. These precise XMM observations confirm
that the entropy profiles of clusters are self-similar down to low
mass (
), but that the entropy temperature relation is
shallower than in the purely gravitational model. This
self-similarity of shape is a strong constraint, allowing us to rule
out simple pre-heating models. The gas history thus probably depends
not only on gravitational processes, but also on the interplay between
cooling and various galaxy feedback mechanisms.
Key words: cosmology: observations / cosmology: dark matter / X-rays: galaxies: clusters / galaxies: clusters: individual: A 1991 / A 2717 / MKW 9 / galaxies: intergalactic medium
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.