Issue |
A&A
Volume 429, Number 1, January I 2005
|
|
---|---|---|
Page(s) | 19 - 30 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20041656 | |
Published online | 13 December 2004 |
Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae
Astrophysics Group, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK e-mail: l.lucy@imperial.ac.uk
Received:
13
July
2004
Accepted:
7
September
2004
Monte Carlo techniques based on indivisible energy packets are described for
computing light curves and spectra for 3-D supernovae. The radiative transfer is
time-dependent and includes all effects of . Monte Carlo quantization
is achieved by discretizing the initial distribution of
into
radioactive pellets. Each pellet decays with the emission of a
single energy packet comprising γ-ray photons
representing one line from either the
or the
decay
spectrum. Subsequently, these energy packets propagate through the
homologously-expanding ejecta with
appropriate changes in the nature of their contained energy as they undergo
Compton scatterings and pure absorptions.
The 3-D code is tested by applying it to a spherically-symmetric
SN in which the transfer of optical radiation is treated with a grey
absorption coefficient. This 1-D problem is separately solved using
Castor's co-moving frame moment equations. Satisfactory agreement is obtained.
The Monte Carlo code is a platform onto which more advanced treatments
of the interactions of matter and radiation can be added. Some of
these have already been developed and tested in previous papers and are
summarized here.
Key words: stars: supernovae: general / radiative transfer / methods: numerical
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.