Issue |
A&A
Volume 425, Number 3, October III 2004
|
|
---|---|---|
Page(s) | 1133 - 1142 | |
Section | Celestial mechanics and astrometry | |
DOI | https://doi.org/10.1051/0004-6361:20041216 | |
Published online | 28 September 2004 |
The 3D restricted three-body problem under angular velocity variation
Department of Engineering Sciences, Division of Applied Mathematics and Mechanics, University of Patras, 26504 Patras, Greece e-mail: K.Papadakis@des.upatras.gr
Received:
3
May
2004
Accepted:
23
June
2004
Nonlinear approximation of periodic motions around the
collinear equilibrium points in the case of the restricted
three-body problem when the angular velocity of the primaries is
not equal to the value of the classical problem (which is unit in
the usual units of mass, length and time), is studied. The
stability of the equilibrium points and the analytical solutions
in their neighborhood constructing series approximations of the
periodic orbits in the planar and in the spatial problem, are
given. Families which emanate from L1, L2 and L3 both in
the plane and in three dimensions as well as their stability for
the Earth-Moon mass distribution, are computed. Special generating
plane orbits, the vertical-critical orbits, of the families a,
b and c of the problem, are determined and presented. We have
also computed series of vertical-critical periodic orbits with the
angular velocity as parameter. Three-dimensional families which
generate from the bifurcation orbits for , are given.
Key words: celestial mechanics / methods: numerical
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.