Issue |
A&A
Volume 422, Number 3, August II 2004
|
|
---|---|---|
Page(s) | 793 - 816 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20035874 | |
Published online | 16 July 2004 |
Local models of stellar convection:
Reynolds stresses and turbulent heat transport
1
Astronomy Division, Department of Physical Sciences, University of Oulu, PO Box 3000, 90014 University of Oulu, Finland e-mail: petri.kapyla@oulu.fi
2
Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, 79104 Freiburg, Germany
3
Laboratoire d'Astrophysique, Observatoire Midi-Pyrnes, 14 Av. E. Belin, 31400 Toulouse, France
Received:
16
December
2003
Accepted:
14
March
2004
We study stellar convection using a local
three-dimensional MHD model, with which we investigate the
influence of rotation and large-scale magnetic fields on the
turbulent momentum and heat transport and their role in generating
large-scale flows in stellar convection zones. The former is
studied by computing the turbulent velocity correlations, known as
Reynolds stresses, the latter by calculating the correlation of
velocity and temperature fluctuations, both as functions of
rotation and latitude. We find that the horizontal correlation,
, capable of generating horizontal differential
rotation, attains significant values and is mostly negative in the
southern hemisphere for Coriolis numbers exceeding unity,
corresponding to equatorward flux of angular momentum. This result
is also in accordance with solar observations. The radial component
is negative for slow and intermediate rotation
indicating inward transport of angular momentum, while for rapid
rotation, the transport occurs outwards. Parametrisation in terms
of the mean-field Λ-effect shows qualitative agreement with
the turbulence model of Kichatinov & Rüdiger ([CITE]) for
the horizontal part
, whereas for the vertical Λ-effect,
, agreement only for intermediate rotation exists. The Λ-coefficients become suppressed in the limit
of rapid rotation, this rotational quenching being stronger and
occurring with slower rotation for the V component than for H. We have also studied the behaviour of the Reynolds stresses
under the influence of a large-scale azimuthal magnetic field of
varying strength. We find that the stresses are enhanced by the
presence of the magnetic field for field strengths up to and above
the equipartition value, without significant quenching. Concerning
the turbulent heat transport, our calculations show that the
transport in the radial direction is most efficient at the
equatorial regions, obtains a minimum at midlatitudes, and shows a
slight increase towards the poles. The latitudinal heat transport
does not show a systematic trend as a function of latitude or
rotation.
Key words: convection / hydrodynamics / Sun: rotation
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.