Issue |
A&A
Volume 422, Number 2, August I 2004
|
|
---|---|---|
Page(s) | 675 - 691 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20047187 | |
Published online | 09 July 2004 |
X-ray emission lines from inhomogeneous stellar winds
Astrophysik, Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany e-mail: lida@astro.physik.uni-potsdam.de
Received:
2
February
2004
Accepted:
7
April
2004
It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of the X-ray observatories Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of the X-ray production. It turned out that none of the existing models was able to fit the observations consistently. The possible caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the evidence that the stellar winds are in fact structured, we present a 2-D numerical model of a stochastic, inhomogeneous wind. Small parcels of hot, X-ray emitting gas are permeated by cool, absorbing wind material which is compressed into thin shell fragments. Wind fragmentation alters the radiative transfer drastically, compared to homogeneous models of the same mass-loss rate. X-rays produced deep inside the wind, which would be totally absorbed in a homogeneous flow, can effectively escape from a fragmented wind. The wind absorption becomes wavelength independent if the individual fragments are optically thick. The X-ray line profiles are flat-topped in the blue part and decline steeply in the red part for the winds with a short acceleration zone. For the winds where the acceleration extends over significant distances, the lines can appear nearly symmetric and only slightly blueshifted, in contrast to the skewed, triangular line profiles typically obtained from homogeneous wind models of high optical depth. We show that profiles from a fragmented wind model can reproduce the observed line profiles from ζ Orionis. The present numerical modeling confirms the results from a previous study, where we derived analytical formulae from a statistical treatment.
Key words: stars: winds, outflows / X-rays: stars / line: profiles / radiative transfer
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.